PROPOSED INTEGRATED HEALTH \& EDUCATION PRECINCT DESIGNATION

58-68 DELANCEY STREET, ORMISTON

Traffic Impact Assessment
For 'The Hub Precinct Pty Ltd'

Table of Contents

1. INTRODUCTION 4
2. CONTEXT OF THE DEVELOPMENT SITE 5
2.1 DEVELOPMENT SITE 5
2.2 EXISTING ROAD NETWORK 6
3. DETAILS OF THE PROPOSED DEVELOPMENT 9
3.1 PROPOSED DEVELOPMENT 9
3.2 ACCESS ARRANGEMENTS 10
3.3 LIMITED ACCESS POLICY 11
4. IMPACT ASSESSMENT 12
4.1 BACKGROUND TRAFFIC 12
4.2 IMPACT ASSESSMENT AREA 12
4.3 TRIP GENERATION 13
4.4 TRIP DISTRIBUTION 14
4.5 DEVELOPMENT TRAFFIC 14
4.6 DESIGN TRAFFIC 14
4.7 IMPACT ASSESSMENT BASED ON MICROSIM MODELLING 14
4.8 ACCESS ARRANGEMENTS - IMPACT ASSESSMENT 17
5. SUMMARY 22
APPENDIX A - SITE PLANS 23
APPENDIX B- RAW TRAFFIC SURVEY DATA 24
APPENDIX C- TRAFFIC MOVEMENT DIAGRAMS 25
APPENDIX D- MICRO SIMLUATION MODELLING REPORT 26
APPENDIX E- SIDRA OUTPUTS 27
APPENDIX F- CONCEPT INTERSECTION DESIGNS 28

Revision	Date	Description	Author	Verifier	Approver
A	11.08 .2022	Draft Issue	EG	SW	SW
B	01.10 .2022	Updated Draft Issue	EG	SW	SW
C	08.11 .2022	Final	EG	SW	SW
D	27.04 .2023	Updated Final	CT	SW	SW

Authorised by:
Steve Williams

Position: Executive Manager, Transport \& Infrastructure RPEQ No.: 06417

1. INTRODUCTION

Lambert \& Rehbein (SEQ) Pty Ltd has been commissioned by The Hub Precinct Pty Ltd to undertake a Traffic Impact Assessment for a proposed mixed use commercial development located at 58-68 Delancey Street, Ormiston QLD 4160, which is formally described as 0/SP308738, 0-2/SP308739; 0/SP308740; 4/SP308740; and $10-16 /$ SP314782. The development site currently contains existing and approved medical and education buildings, a car park, and a portion of vacant land, with a total site area of approximately 5.2ha.
The proposed designation is for an Integrated Health \& Education Precinct, consisting of a private hospital, medical consulting suites, research and education facility, residential aged care, and ancillary retail." This report has considered the sites full development potential which also includes childcare, independent living and a community hub which will be assessed at a future date via the DA process. It is understood that the development will be completed over three (3) stages. The proposed development proposes to gain access to the external road network via a new signalised intersection on Finucane Road and an existing access on Delancey Street. The proposed site layout, prepared by Destravis Group, is attached in Appendix A.
The development application is being pursued through the Ministerial Designation process and this traffic assessment forms part of the application material. We note that a previous detailed traffic assessment had been undertaken focussing on the proposed access to Finucane Road and was documented in a Lambert \& Rehbein Technical Note (B19590TN002 Rev C) dated 10/11/2021. The intent of this initial separate engagement was to review the proposed new site access and demonstrate that a signalised intersection could be implemented in this location without significant implication for safety and efficiency of the state-controlled road network.

Subsequent to this previous work we have undertaken further detailed traffic analysis with a more networkbased traffic analysis that has been undertaken in accordance with the requirements of the GTIA. This report documents the work undertaken and the findings and recommendations.

The site will be referred to as the 'development site' from hereon in.
This report has been undertaken to assess the potential impact that the proposed development could have on the external road network surrounding the site, and is set out as follows:

Section 2 discusses the existing land use and traffic arrangements in the vicinity of the proposed development site.

Section 3 provides details of the proposed development site, including an assessment of the site layout and access arrangements.

Section 4 displays the calculations and assumptions used to establish the forecast generation and distribution of the proposed development traffic including a network aggregate delay assessment based on Microsim Modelling.

Section 5 summarises the key outcomes of the traffic investigations.
Lambert \& Rehbein has derived the data in this report primarily from the data provided by the Client, and a desktop site investigation.

This report has been prepared on behalf of and for the exclusive use of the Client, and is subject to and issued in connection with the provisions of the agreement between Lambert \& Rehbein and the Client. Lambert \& Rehbein accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

LAMBERT \& REHBEIN engineers - managers - scientists

2. CONTEXT OF THE DEVELOPMENT SITE

This section of the report describes the context of the proposed development and includes a description of the existing road network, adjacent land uses, and existing public transport facilities servicing the site.

2.1 DEVELOPMENT SITE

The development site is located at 58-68 Delancey Street, Ormiston QLD 4160, which is formally described as 0/SP308738, 0-2/SP308739; 0/SP308740; 4/SP308740; and 10-16/SP314782. The development site currently contains existing and approved medical and education buildings, a car park, and a portion of vacant land, with a total site area of approximately 5.2ha.

The development site is zoned partially as 'Low Impact Industry' and partially 'Recreation and Open Space' as per the Redlands City Council Planning Scheme. The development site is generally surrounded by 'Low Density residential' developments to the north, 'Community Facilities' to the south and 'Medium Density residential' and 'neighbourhood centre' developments to the east. The development site in the context of the external road network is shown in Figure 2-1. The subject site has southern frontage to Finucane Road and eastern frontage to Delancey Street. There are no other road frontages from which can gain access.

Figure 2-1 Proposed Development Site

2.2 EXISTING ROAD NETWORK

Inspection of the land use, road condition, intersection characteristics, public transport facilities, pedestrian access, and cyclist provisions surrounding the proposed development site has been undertaken in preparation of this assessment. This was completed to collect information about the road network operation, safety characteristics, public transport network and specific network / land-use factors potentially of influence to the proposed development.

2.2.1 FINUCANE ROAD

Finucane Road runs along the southern frontage of the development site. Finucane Road is gazetted as a 'State Controlled Road' under the jurisdiction of the Department of Transport and Main Roads (DTMR). Additionally, we note that this section of Finucane Road at the site frontage is gazetted as a 'Limited Access Road' (LAR 2) and has a defined limited access policy. This is discussed further in Section 3 following.

The general form of Finucane Road is shown in Figure 2-2 and was observed to have the following characteristics at the site frontage:

- Two-way, four-lane, median divided road;
- Kerb and channel exist on the eastbound side of the road (approx. 260m along the site frontage);
- Carriageway width of approximately 16.22 m (including approx. 2 m median) at the site frontage;
- Finucane Road meets Delancey Street at a four-way signalised intersection, more details in Section 2.2.3;
- No parking permitted on either side of the road;
- Pedestrian footpaths provided on the eastbound side of the road along the site frontage; and
- Posted speed limit of $70 \mathrm{~km} / \mathrm{hr}$.

Figure 2-2 Finucane Road (Facing west)

2.2.2 DELANCEY STREET

Delancey Street is located on the eastern frontage of the development site. Delancey Street is gazetted as a 'local road' as per Redlands City Council Planning Scheme. The general form of Delancey Street is shown in Figure 2-3 and was observed to have the following characteristics at the site frontage:

- Two-way, two-lane, median divided road;
- Kerb and channel exist on both sides of the road;
- Carriageway width of approximately 17.6 m (including median and turn lanes as can been seen in Figure 2-3) at the site frontage;
- Delancey Street meets Finucane Road at a four-way signalised intersection, more details in Section 2.2.3;
- Shoulder parking permitted on both sides of the road;
- Pedestrian footpaths provided on both sides of the road; and
- Posted speed limit of $50 \mathrm{~km} / \mathrm{hr}$.

Figure 2-3 Delancey Street (Facing North)

2.2.3 DELANCEY STREET / FINUCANE ROAD SIGNALISED INTERSECTION

The Delancey Street / Finucane Road signalised intersection is an existing four-way signalised intersection located at the south-eastern corner of the development site. The existing intersection layout is as demonstrated in the aerial imagery provided in Figure 2-4. It should be noted that as a result of the proposal, the Delancey Street / Finucane Road signalised intersection will be upgraded. More details are provided in Section 4 regarding the proposed upgrades.

Figure 2-4 Existing Delancey Street / Finucane Road Signalised Intersection

3. DETAILS OF THE PROPOSED DEVELOPMENT

This section of the report describes the nature of the proposed development, the proposed access arrangements, servicing arrangements and on-site manoeuvrability.

3.1 PROPOSED DEVELOPMENT

The proposed designation is for an Integrated Health \& Education Precinct, consisting of a private hospital, medical consulting suites, research and education facility, residential aged care, and ancillary retail." This report has considered the sites full development potential which also includes childcare, independent living and a community hub which will be assessed at a future date via the DA process. It is understood that the development will be completed over three (3) stages.

The proposed site layout and detailed functional plans, prepared by Destravis Group, are attached in Appendix A. We note that these planning layouts have evolved as design of the site has developed and further details of the site gradings and conceptual engineering design has also evolved. As such the current broad land uses have changed as the site constraints have become known.
A summary of the proposed yields as currently proposed are summarised in Table 3-2.

Table 3-1 Proposed Development Yields

USE		
PRIVATE HOSPITAL	148 Beds + 14 Theatres	$22,411 \mathrm{~m}^{2}$ GFA
DAY SURGERY	18 Day Beds (inc. within the Private Hospital)	
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	-	4,614 m² GFA
CHILD CARE	150 Places	1,200 m² GFA
SPECIAL RETAIL	-	6,213 m² GFA
RESEARCH INSTITUTE	-	4,407 m² GFA
ASSISTED LIVING UNIT \& FACILITIES	200 Units + Facilities	25,000 m² GFA
COMMUNITY HUB	-	2,000 m² GFA
AGED CARE	80 Beds + Ancillary Area	6,756 m² GFA
TOTAL		72,601 m² GFA

We note that traffic modelling undertaken for the project has included detailed SIDRA intersection analysis and detailed microsimulation modelling utilising the Aimsun modelling package (see Section 4 of this report). The modelling work undertaken was significant and was based on a previous land use scheme that had estimated a higher development yield that the current proposal. This relates to the areas and number of beds adopted for the Aged Care Facility. The yield adopted in the traffic modelling is shown in Table 3-2 below and clearly represents a higher development yield and as such a higher level of traffic generation.

On this basis we have not provide new traffic modelling scenarios as the modelling undertaken will inherently include safety margins due to the higher traffic generation rates.

Table 3-2 Proposed Development Yields

USE		
PRIVATE HOSPITAL	148 Beds + 14 Theatres	22,411 m^{2} GFA
DAY SURGERY	18 Day Beds	
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	-	4,614 m² GFA
CHILD CARE	150 Places	1,200 m² GFA
SPECIAL RETAIL	-	6,213 m² GFA
RESEARCH INSTITUTE	-	4,407 m² GFA
ASSISTED LIVING UNIT \& FACILITIES	200 Units + Facilities	25,000 m² GFA
COMMUNITY HUB	-	2,000 m² GFA
AGED CARE	134 Beds + Ancillary Area	11,163 m² GFA
TOTAL		77,008 m^{2} GFA

3.2 ACCESS ARRANGEMENTS

The proposed development will gain access to the external network via a new signalised intersection on Finucane Road. Finucane Road is gazetted a State Controlled Road and a Limited Access Road along the site frontage.

The development site has an existing priority-controlled, all-movement access provided on Delancey Street, which is designated a local road as per the Redlands City Council. For a development of the nature proposed, it is not considered viable from a traffic engineering perspective to have this access as the sole access into the proposed development. This would lead to safety concerns due to delay and general congestion on Delancey Street and the consequential impacts on the state-controlled road network as drivers becoming impatient. There is additionally limited opportunity to "significantly" upgrade the existing site access on Delancey Street given the constraints associated with land ownership and intersection proximity. It should be noted that as a result of the proposed development, the Delancey Street Access will be upgraded to ban right turns out of the site and to include a 20 m left turn lane into the site. A SIDRA intersection analysis of the Delancey Street Access intersection has been completed and has been included in Section 4.
The proposed signalised access intersection on Finucane Road will operate efficiently whilst also preserving the functionality, safety and efficiency of the state-controlled road. The intersection design will also ensure vulnerable users such as cyclists and pedestrians are accommodated and protected through the design of this access. A SIDRA intersection analysis of the proposed Finucane Road intersection has been completed and has been included in Section 4.

As part of the current conceptual designs, bicycle lanes have been provided on both sides of Finucane Road, and signalised pedestrians crossings have been provided across the site access and the Finucane Road eastern approach. We note that a signalised pedestrian crossing has not been provided on the Finucane Road western approach given there will likely be no pedestrian demand at this location.

The Concept Design for the site access intersection is shown in the plans prepared by Mortons Urban Solutions which have been informed by the detailed traffic modelling work undertaken as part of this project and as described in Section 4 following. The concept design of the intersection is included in Drawing No. 37801-XWP-005 Amend. A and included in Appendix F of this report.

3.3 LIMITED ACCESS POLICY

As discussed during pre-lodgement meetings with the SARA / DTMR, we note that Finucane Road along the site frontage is a limited access road (LAR 2) and as such the intent of the limited access policy requires consideration and assessment. We note that the current SDAP outlines that access to a road classified as a LAR 2 road can be considered subject to assessment

Further detailed traffic analysis has been completed and documented further in this traffic report and clearly shows that operationally the proposed access intersection is adequate from an operational perspective for a notional 10 year design horizon

The new intersection will provide approximately 370 m of spacing to the signalised intersection of Finucane Road and Delancey Street which we note is slightly short of the 400 m spacing requirement outlined in the Limited Access Policy albeit that we are of the view that the intent is achieved. It is important to note that the location of the proposed signalised intersection has been moved as far west along the site frontage as is physically possible. The location is constrained by the environmental corridor along the western side of the land and the existing bridge structure on Finucane Road.

We note that the proposed turn lanes have been reduced to ensure that the proposed access will not interfere on the ability for the adjacent intersection to be upgraded and that the intersection can be designed to meet the safety and design criteria set out in the Road Planning and Design Manual and/ or Austroads Guides, as per the Limited Access Policy.

4. IMPACT ASSESSMENT

This section provides details of the potential impact that the development traffic could have on the operation of the existing site access and the proposed new site access intersection. In particular, the assessment has focused on the existing Delancey Street priority-controlled access intersection at the north-eastern corner of the site, as well as proposed signalised access intersection on Finucane Road at the southern site boundary.

In addition, we have undertaken a detailed microsimulation modelling exercise, utilising the Aimsun modelling package, for the purposes of assessing the net delays impacts of the proposal on the external road network in accordance with the GTIA principles. This is discussed in more detail in Section 4.7 following.

4.1 BACKGROUND TRAFFIC

Vehicle movement survey data was collected at the following intersections on $29^{\text {th }}$ March 2022:

- Finucane Road / McDonald Road;
- Finucane Road / Dawson Road;
- Finucane Road / Delancey Street;
- Finucane Road / Wellington Street;
- Wellington Street / Russell Street;
- Wellington Street / Freeth Street; and
- Delancey Street / Freeth Street;

Vehicle movement data for the traffic moving in and out of the existing Delancey Street Access was collected on Thursday 29 October 2020. The through volumes utilised for this intersection were carried from the 2022 counts from the intersections to the north and south.

The intersection count data was collected from 6:00 AM to 9:00 AM and 2:30 PM to 6:30 PM, presented in 15minute periods to capture peak periods.

The AM and PM peak hours for the intersections were found to be as follows:

- AM: 7:45 AM to 8:45 AM; and
- PM: 4:00 PM to 5:00 PM.

Summary of traffic survey data is displayed in Figure C1 attached in Appendix C, with detailed traffic survey data included in Appendix B.

The opening year for the development is proposed to be 2024. To assess the future background traffic a linear growth rate of 1% per annum has been applied to all movements along Finucane Road and Delancey Street. It should be noted that the background traffic entering and exiting the existing site have not been grown. The predicted background traffic in 2024 and 2034 (10-year design horizon) has been presented in Figure C2 and Figure C3 attached in Appendix C.

4.2 IMPACT ASSESSMENT AREA

The impact assessment area that has been included in the network based Aimsun micro-simulation model, which is attached in Appendix \mathbf{D}, is as illustrated in Figure 4-1. It should be noted that this micro-simulation traffic model includes the proposed Finucane Road Site Access Intersection.

Figure 4-1 Impact Assessment Area

4.3 TRIP GENERATION

Additional traffic associated with the proposed development has been forecasted, using industry accepted peak hour traffic generation rates, from the RMS (formally RTA) Guide to Traffic Generating Developments and The Department of Transport and Main Roads (DTMR) Open Source Data, for development land uses. The traffic generation rates and in/out directionality of movements adopted for the analysis within this assessment, are shown in Table 4-1. For the purposes of this assessment, the speciality retail AM trip generation rate has been taken as 50% of the PM trip generation. The community hub has also been assumed to be ancillary to the development and will not generate individual trips external to the site.

Table 4-1 Generation \& Directionality Rates

LAND USE	GENERATION RATE		DIRECTIONALITY (\% IN / \% OUT)		SOURCE
	AM Peak	PM Peak	AM Peak	PM Peak	
PRIVATE HOSPITAL	$\begin{aligned} & -22.07 \text { trips }+1.04 \text { trips } x \\ & \text { beds } \end{aligned}$	-22.07 trips +1.04 trips x beds	50\% in / 50\% out	50\% in / 50\% out	RMS (formally RTA)
DAY SURGERY					
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	9.81 trips / 100m² GFA	$\begin{aligned} & 5.80 \text { trips / } 100 \mathrm{~m}^{2} \\ & \text { GFA } \end{aligned}$	50\% in / 50\% out	50\% in / 50\% out	DTMR Open Source Data
CHILD CARE	0.8 trips / child	0.7 trips / child	50\% in / 50\% out	50\% in / 50\% out	RMS (formally RTA)
SPECIAL RETAIL	2.8 trips / $100 \mathrm{~m}^{2}$ GFA	5.6 trips / 100m² GFA	50% in / 50\% out	50% in / 50\% out	RMS (formally RTA)
RESEARCH INSTITUTE	2 trips / 100m² GFA	2 trips / 100m² GFA	90\% in / 10\% out	10\% in / 90\% out	RMS (formally RTA)
ASSISTED LIVING UNIT \& FACILITIES	0.2 trips per dwelling	0.2 trips per dwelling	80\% in / 20\% out	20\% in / 80\% out	RMS (formally RTA)
AGED CARE	0.2 trips per dwelling	0.2 trips per dwelling	80\% in / 20\% out	20\% in / 80\% out	RMS (formally RTA)
COMMUNITY HUB	-	-	-	-	

Due to the nature of the site containing various mixed uses, it is expected that there will be cases of drivers visiting more than one (1) use during the same trip. These trips represent the likely cross-utilisation of the site and described as 'linked trips', they generally result in a reduction of trips to and from the site. A 10\% reduction has been assumed for the overall trips generated by the development site which will provide a reasonable forecast of potential traffic demands. As such, based on the above guidelines and assumptions, the estimated traffic generated by the proposed development is documented in Table 4-2.

Table 4-2 Development Traffic Generation

LAND USE	YIELD	AM(IN)	AM (OUT)	PM (IN)	PM (OUT)
PRIVATE HOSPITAL	148 BEDS + 14 THEATRES				
DAY SURGERY	18 Day Beds				
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	4,614 m ${ }^{2}$ GFA	226	226	134	134
CHILD CARE	150 PLACES	60	60	53	53
SPECIAL RETAIL	6,213 m ${ }^{2}$ GFA	87	87	174	174
RESEARCH INSTITUTE	4,407 m ${ }^{2}$ GFA	79	9	9	79
ASSISTED LIVING UNIT \& FACILITIES	200 UNITS + FACILITIES	32	8	8	32
AGED CARE	134 BEDS + Ancillary Area	21	5	5	21
COMMUNITY HUB	2,000 m ${ }^{2}$ GFA	-	-	-	-
Total Trips per Peak (10\% Cross-Utilisation)		524	424	412	512

As illustrated in Table 4-2, the proposed development is anticipated to generate approximately 948 trips during AM peak and 924 trips during the PM peak.

4.4 TRIP DISTRIBUTION

The trip distribution adopted within the model is $77 \%: 23 \%$ split between the Finucane Road and Delancey Street accesses. The SIDRA intersection assessment adopted the distribution of traffic through the network that was an output from the Aimsun Micro-simulation Model, which has been included in Appendix D noting the availability of various route choices through the network.

4.5 DEVELOPMENT TRAFFIC

Based on the trip distribution outlined in Section 4.4, the trip generation for the development is displayed in Figure C4, attached in Appendix C.

It should be noted that due to the proposed upgrades, traffic movements through the network have altered including alterations to the "background" traffic. Where there are multiple routes available, and the proposal includes upgrades to address existing network constraints, it is routine that there will be some diversion of traffic as a result of improvements made to suit other network movement options. It is this diversion of traffic through the network as a result of the proposed upgrades that has resulted in the negative volumes on turning movements within the network.

4.6 DESIGN TRAFFIC

The design traffic scenarios (background traffic plus the development generated traffic) in 2024 and 2034, are displayed in Figure C6 and Figure C7, respectively attached in Appendix C.

4.7 IMPACT ASSESSMENT BASED ON MICROSIM MODELLING

Due to the volume of traffic that the proposed development site is anticipated to generate in the peak hours, the proposed development traffic was assessed in relation to the potential for it to impact over a broader area along the state-controlled and council-controlled road networks. The extent of the potential impacts included a broader "network" of road where various route choices were available which. As such, an assessment of the existing road network, including all stages of the development, was completed to analyse the operational impacts on the surrounding road network based on Aimsun Micro-simulation as opposed to relying solely on SIDRA based analysis. The micro-simulation model has been built with the existing (2022) surrounding road network traffic demand, as outlined in Section 4.1. The micro-simulation modelling report prepared by Adanner Pty Ltd has been attached in Appendix D.

The micro-simulation model has applied the background traffic (growth rate=1\%), trip generation, trip distribution, development traffic and design traffic highlighted above in Section 4.2, Section. 4.3, Section 4.4 and Section 4.5.
As part of the modelling of the development impacts the Aimsun micro-simulation model has been utilised to test with and without development scenarios along with the testing of various road network improvements that were being contemplated. This allowed the project team to identify the most effective mitigation strategies that would deliver the maximum benefit to the existing road users and would mitigate the impacts of the development and the new signalised intersection proposed on Finucane Road. The vehicle delay assessments were based on the microsimulation modelled outputs and importantly, the methodology associated with the delay assessment appropriately dealt with the redirected "background traffic" applying the "with development" network delays for the "base case" and "upgraded" networks to the background traffic only. This was done by essentially applying different vehicle types to the background and development traffic so they could be easily separated from within the micro-simulation model. This approach is consistent with the GTIA requirements.

Table 4-3 shows an aggregate delay assessment of the network in the existing configuration (no mitigation upgrades), undertaken in accordance with the GTIA. The average vehicle delays for each of the individual intersections within the analysis can be found in the micro-simulation modelling report included in Appendix D.

Table 4-3 Delay Assessment - Existing Configuration

INTERSECTION	PEAK PERIOD	AGGREGATE INTERSECTION-DELAY (VEHICLE-MINUTES)		$\mathrm{ID}=\sum_{i=1}^{n} W D-\sum_{i=1}^{n} B C$	
		$\sum B C$	$\sum W D$	Δ	\%
Existing Configuration (No upgrades)	AM Peak	629,062	805,784	176,722	28.09\%
	PM Peak	532,573	618,853	86,280	16.2\%
	Combined Peaks	1,161,635	1,424,637	263,002	22.64\%

The assessment found that with no mitigation upgrades the development generated traffic would increase the aggregate intersection delay by more than 5%. As such, mitigation works to the network are required.
Due to its proximity to the proposed development site, the Finucane Road / Delancey Street signalised intersection was analysed to determine if mitigation upgrades could be undertaken to improve the performance of the overall surrounding network.
We propose that the form of the Finucane Road / Delancey Street intersection be designed generally as shown in Figure 4-2. Due to traffic volumes and logistically fitting the intersection into the available road reserve, the following intersection configuration in our view is ideal.

Figure 4-2 Proposed Finucane Road / Delancey Street Signalised Intersection Layout

Table 4-4 shows an aggregate delay assessment of the network including the above mitigation upgrades to the Finucane Road / Delancey Street signalised intersection, undertaken in accordance with the GTIA. It should be noted that the reconfiguration of the intersection has resulted in a change to the current signal phasing plan. Details of the updated signal phasing are included in the micro-simulation model report attached in Appendix \mathbf{D}. The average vehicle delays for each of the individual intersections within the analysis can be found in the micro-simulation modelling report included in Appendix D.

Table 4-4 Delay Assessment - With Upgrades

INTERSECTION	PEAK PERIOD	AGGREGATE INTERSECTION-DELAY (VEHICLE-MINUTES)		$\mathrm{ID}=\sum_{i=1}^{n} W D-\sum_{i=1}^{n} B C$	
		$\sum B C$	$\sum W D$	Δ	\%
Mitigation (With upgrades)	AM Peak	629,062	615,128	-13,934	-2.22\%
	PM Peak	532,573	433,418	-99,155	-18.62\%
	Combined Peaks	1,161,635	1,048,546	-113,089	-9.74\%

As demonstrated in Table 4-4, the assessment found that the development generated traffic would increase the aggregate intersection delay by less than 5% if mitigation upgrades are undertaken to the Finucane Road / Delancey Street signalised intersection, as illustrated in Figure 4-2. The results demonstrate that the performance of the network would theoretically improve with the proposed mitigation upgrades, with a decrease in the average delay experienced through the network.

On the basis of the above, and with the implementation of the proposed upgrade works at the intersection of Finucane Road / Delancey Street, in our view that project will result in a "no net worsening" of delay to the
state-controlled road network and on this basis will satisfy the requirements of the SDAP Codes and the GTIA analysis process and guidelines.

The implementation of the proposed upgrade has been contemplated in some detail given the existing corridor widths available and the land ownership constraints. It is noted that the verge on the southern side of the Finucane Road frontage adjacent to the intersection is relatively narrow and while this land appears to be relatively unconstrained it is understood to be owned by the State.

In advancing the conceptual design of the proposed intersection upgrades we note that the project team has developed a solution that appears to be able to be accommodated within the existing road corridor or within land that forms part of the proposal.

The Concept Design for the proposed upgrade works at the subject intersection is shown in the plans prepared by Mortons Urban Solutions which have been informed by the detailed traffic modelling work undertaken and documented above. The concept design of the intersection is included in Drawing No. 37801-XWP-005 Amend. A and included in Appendix F of this report.

It is proposed that these works will be implemented as part of the ultimate project delivery.

4.8 ACCESS ARRANGEMENTS - IMPACT ASSESSMENT

4.8.1 SIDRA ANALYSIS ASSUMPTIONS

The following scenario provides an assessment of the proposed Finucane Road signalised access intersection as well as the existing priority-controlled access intersection via Delancey Street.

The following parameters have been applied to the SIDRA model:

- A Saturation Flow of 1,950 through car units per hour;
- A Peak Flow Period of 30 minutes, with a conservative Peak Flow Factor of 95\%;
- Heavy vehicle volumes based on the traffic survey count data;
- Intersection geometry based on measurements of aerial imagery supplemented with on-site measurements; and
- Gap acceptance parameters based on default SIDRA values (for the right turn out of Arthur Street at the Delancey Street site access intersection, the gap acceptance parameters outlined in AUSTROADS GTRD Part 4A Table 3.5 for a right turn from minor road across a two-lane / two-way road have been adopted).

4.8.2 EXISTING SITE ACCESS ON DELANCEY STREET

SIDRA Intersection software has been used to assess the performance of the Finucane Road signalised access intersection. Figure 4-3 shows the proposed intersection configuration as modelled in the SIDRA analysis.

Figure 4-3 Delancey Street / Site Access / Arthur Street Intersection Layout

Table 4-5 presents the results of the Delancey Street access intersection SIDRA analysis for 2024 and 2034 with development scenarios, with detailed movement summary SIDRA outputs included in Appendix E.

Table 4-5 Delancey Street / Site Access / Arthur Street Intersection SIDRA Outputs

	APPROACH		AM PEAK				PM PEAK			
SCENARIO			DoS	Avg Delay (s)	LoS	95\% Back of Queue (m)	DoS	Avg Delay (s)	LoS	95\% Back of Queue (m)
2024 Design (Background Development)	Delancey Street (S)	Left	0.045	5.6	LOS A	0	0.034	5.6	LOS A	0
		Through	0.182	0	LOS A	0	0.174	0	LOS A	0
		Right	0.008	7.7	LOS A	0.2	0.01	6.9	LOS A	0.3
		U-turn	0.008	11.7	LOS B	0.2	0.01	9.8	LOS A	0.3
		Approach	0.182	1.2	NA	0.2	0.174	1.1	NA	0.3
	Arthur Street (E)	Left	0.024	8.6	LOS A	0.5	0.014	7.5	LOS A	0.3
		Right	0.024	18	LOS C	0.5	0.014	14.6	LOS B	0.3
		Approach	0.024	11.4	LOS B	0.5	0.014	9.3	LOS A	0.3
	Delancey Street (N)	Left	0.301	5.6	LOS A	0	0.225	5.6	LOS A	0
		Through	0.301	0.1	LOS A	0	0.225	0.1	LOS A	0
		Right	0.111	7.6	LOS A	3.1	0.078	7.3	LOS A	2.1
		U-turn	0.111	9.3	LOS A	3.1	0.078	9.1	LOS A	2.1
		Approach	0.301	1.2	NA	3.1	0.225	1.2	NA	2.1
	Site Access (W)	Left	0.143	7.3	LOS A	3.7	0.199	7.4	LOS A	5.5
		Approach	0.143	7.3	LOS A	3.7	0.034	5.6	LOS A	0
2034 Design (Background Development)	Delancey Street (S)	Left	0.045	5.6	LOS A	0	0.034	5.6	LOS A	0
		Through	0.244	0.1	LOS A	0	0.194	0	LOS A	0
		Right	0.011	8.2	LOS A	0.3	0.011	7.1	LOS A	0.3
		U-turn	0.011	12.7	LOS B	0.3	0.011	10.2	LOS B	0.3
		Approach	0.244	1	NA	0.3	0.194	1	NA	0.3
	Arthur Street (E)	Left	0.037	9.2	LOS A	0.8	0.017	7.7	LOS A	0.4
		Right	0.037	23.6	LOS C	0.8	0.017	16.2	LOS C	0.4
		Approach	0.037	14	LOS B	0.8	0.017	9.6	LOS A	0.4
	Delancey Street (N)	Left	0.335	5.6	LOS A	0	0.245	5.6	LOS A	0
		Through	0.335	0.1	LOS A	0	0.245	0.1	LOS A	0
		Right	0.129	8.5	LOS A	3.5	0.082	7.6	LOS A	2.2
		U-turn	0.129	10.7	LOS B	3.5	0.082	9.5	LOS A	2.2
		Approach	0.335	1.3	NA	3.5	0.245	1.1	NA	2.2
	Site Access (W)	Left	0.166	8.2	LOS A	4.2	0.208	7.6	LOS A	5.7
		Approach	0.045	5.6	LOS A	0	0.034	5.6	LOS A	0

As illustrated in Table 4-5, the Delancey Street access will operate below the practical capacity for a prioritycontrolled intersection (DoS<0.8, Delay<42 sec) at both the year of opening (2024) and a 10-year design horizon (2034) in both peak periods.

4.8.3 PROPOSED SITE ACCESS ON FINUCANE ROAD

SIDRA Intersection software has been used to assess the performance of the Finucane Road signalised access intersection. Figure 4-4 shows the proposed intersection configuration as modelled in the SIDRA analysis.

Figure 4-4 Proposed Finucane Road Signalised Access Intersection
The signal phasing plan adopted in both peak periods can be seen in Figure 4-5. A cycle time of 90 seconds has been adopted for this analysis.

Figure 4-5 Finucane Road Signalised Access Intersection Signal Phasing
Table 4-6 presents the results of the Finucane Road access intersection SIDRA analysis with detailed movement and phasing SIDRA Outputs attached in Appendix E.

Table 4-6 Finucane Road Signalised Access Intersection SIDRA Outputs

	APPROACH		AM PEAK				PM PEAK			
SCENARIO			DoS	Avg Delay (s)	LoS	95\% Back of Queue (m)	DoS	Avg Delay (s)	LoS	95\% Back of Queue (m)
2024 Design (Background + Development)	Finucane Road (E)	Through	0.595	6.9	LOS A	126	0.601	9.4	LOS A	133.3
		Right	0.604	47.1	LOS D	45.4	0.633	49.4	LOS D	40.9
		Approach	0.604	10.3	LOS B	126	0.633	12.6	LOS B	133.3
	Site Access (N)	Left	0.212	27.3	LOS C	30	0.249	25.5	LOS C	37.4
		Right	0.517	44.5	LOS D	43.7	0.612	41.1	LOS D	68.6
		Approach	0.517	36.2	LOS D	43.7	0.612	34.4	LOS C	68.6
	Finucane Road (W)	Left	0.178	9.5	LOS A	22.4	0.143	8.8	LOS A	16.5
		Through	0.620	16.7	LOS B	136.5	0.623	18.7	LOS B	132.6
		Approach	0.62	15.5	LOS B	136.5	0.623	17.2	LOS B	132.6
2034 Design (Background + Development)	Finucane Road (E)	Through	0.637	7.3	LOS A	142.1	0.641	8.8	LOS A	147.3
		Right	0.659	48.9	LOS D	46.7	0.633	49.4	LOS D	40.9
		Approach	0.659	10.6	LOS B	142.1	0.641	11.7	LOS B	147.3
	Site Access (N)	Left	0.219	28.1	LOS C	30.5	0.264	27.1	LOS C	38.8
		Right	0.670	46.4	LOS D	59.2	0.684	44.1	LOS D	72.1
		Approach	0.67	38.7	LOS D	59.2	0.684	36.8	LOS D	72.1
	Finucane Road (W)	Left	0.175	9.2	LOS A	21.4	0.143	8.8	LOS A	16.5
		Through	0.713	17.1	LOS B	170.8	0.695	18.2	LOS B	159.6
		Approach	0.713	15.9	LOS B	170.8	0.695	17	LOS B	159.6

As illustrated in Table 4-6, the Finucane Road access will operate within the reasonable operational limits for a signalised intersection (notionally $\operatorname{DoS}<0.9$) at both the year of opening (2024) and a 10-year design horizon (2034) in both peak periods. Queues on the eastern Finucane Road approach will remain within turn lanes and clear of the adjacent Delancey Street signalised intersection. Queues on the western Finucane Road approach will remain within turn lanes and clear of adjacent intersections.

The operational analysis shows that the proposed signalised intersection would operate at an acceptable level for the ten-year design horizon and importantly all traffic would be able to clear during each relevant phase.

We note that this analysis has been based on the intersection being analysed as an isolated intersection and not part of a network. The micro-simulation model report includes the proposed Finucane Road access intersection, demonstrating that a network-based analysis results in even better operational outcomes that that demonstrated in Table 4-6.

The Concept Design for the site access intersection is shown in the plans prepared by Mortons Urban Solutions which have been informed by the detailed traffic modelling work undertaken and described above. The concept design of the intersection is included in Drawing No. 37801-XWP-005 Amend. A and included in Appendix F of this report.

5. SUMMARY

Lambert \& Rehbein (SEQ) Pty Ltd has been commissioned by The Hub Precinct Pty Ltd undertake a Traffic Impact Assessment for a proposed mixed use commercial development located at 58-68 Delancey Street, Ormiston QLD 4160, which is formally described as 0/SP308738, 0-2/SP308739; 0/SP308740; 4/SP308740; and $10-16 /$ SP314782. The development site currently contains existing and approved medical and education buildings, a car park, and a portion of vacant land, with a total site area of approximately 5.2ha.
The proposed designation is for an Integrated Health \& Education Precinct, consisting of a private hospital, medical consulting suites, research and education facility, residential aged care, and ancillary retail." This report has considered the sites full development potential which also includes childcare, independent living and a community hub which will be assessed at a future date via the DA process. It is understood that the development will be completed over three (3) stages. The proposed development proposes to gain access to the external road network via a new signalised intersection on Finucane Road and an existing access on Delancey Street. The proposed site layout, prepared by Destravis Group, is attached in Appendix A.

The development application is being pursued through the Ministerial Designation process and this traffic assessment forms part of the application material.

The development proposes to gain access directly to the State-controlled road network via a new signalised intersection on Finucane Road to the west of the existing Delancey Street intersection. The site will also gain access to the Delancey Street albeit that the existing all-movements access will be reconfigured to remove the right turn egress from the subject land.

Given the intent to provide a new signalised intersection on Delancey Street, the traffic assessment has included undertaking a detailed assessment of the site intersections for a 10 year design horizon beyond the potential year of opening of 2024. This analysis indicated that the proposal for the new signalised intersection can be incorporated into the state-controlled road network in a manner that will achieve an acceptable level of operational efficiency and can be delivered in a manner consistent with the applicable guidelines. Conceptual functional layout plans have been developed for the site access intersection and are shown in Drawing No. 37801-XWP-005 Amend. A and included in Appendix F of this report.

On the basis of the development including a new intersection on the state-controlled road network we have also undertaken a detailed traffic modelling assessment based on a detailed microsimulation modelling approach. This analysis determined that the development, along with the new signalised intersection would have a relatively significant impact on the net delays through the network. As a part of the modelling process assessment of suitable road network options were undertaken and an upgraded layout for the Delancey Street signalised intersection was developed to mitigate the development impacts. The changes proposed can be delivered within the road network, within any land take contained with land that forms part of the application, and deliver a significant net benefit to the network-based delays.

Conceptual functional layout plans for the upgrades at the Finucane Road / Delancey Street intersection and are shown in Drawing No. 37801-XWP-005 Amend. A and included in Appendix F of this report.
Based on the detailed traffic analysis and modelling undertaken we are of the view that the proposal can be supported from a traffic perspective.

APPENDIX A - SITE PLANS

[^0]\square

${ }_{\text {ORemw }}^{\text {DTG2 }}$ - WHOLE SITE PLA

come	${ }^{\text {coser }}$
cex	$\substack{\text { Onatecto } \\ \text { Alt }}$
	${ }_{\text {ex }}$

APPENDIX B- RAW TRAFFIC SURVEY DATA

Approach			McDonald Rd			Finucane Rd			McDonald Rd			Finucane Rd			
Time Period			$\begin{aligned} & \text { 皆 } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 厄iँ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { 总 } \end{aligned}$			$\begin{aligned} & \text { 吡 } \\ & \text { 品 } \end{aligned}$		$\begin{array}{\|c} \overline{\mathrm{b}} \\ \hline \end{array}$			$\begin{gathered} \text { Ði } \\ \hline \end{gathered}$	
6：00	to	7：00	50	1	51	979	21	1，000	87	6	93	554	32	586	1，730
6：15	to	7：15	59	0	59	1，056	23	1，079	90	5	95	624	35	659	1，892
6：30	to	7：30	60	0	60	1，159	26	1，185	110	4	114	723	41	764	2，123
6：45	to	7：45	61	0	61	1，173	31	1，204	120	3	123	808	39	847	2，235
7：00	to	8：00	69	0	69	1，206	31	1，237	153	3	156	953	49	1，002	2，464
7：15	to	8：15	85	0	85	1，258	36	1，294	205	6	211	1，101	50	1，151	2，741
7：30	to	8：30	114	1	115	1，335	38	1，373	254	7	261	1，162	50	1，212	2，961
7：45	to	8：45	140	2	142	1，396	40	1，436	291	6	297	1，171	52	1，223	3，098
8：00	to	9：00	142	2	144	1，451	48	1，499	280	6	286	1，118	44	1，162	3，091
AM Totals			261	3	264	3，636	100	3，736	520	15	535	2，625	125	2，750	7，285
14：30	to	15：30	129	3	132	1，136	28	1，164	172	3	175	1，229	36	1，265	2，736
14：45	to	15：45	135	2	137	1，175	31	1，206	177	5	182	1，284	30	1，314	2，839
15：00	to	16：00	119	1	120	1，217	35	1，252	185	8	193	1，282	39	1，321	2，886
15：15	to	16：15	130	1	131	1，188	34	1，222	183	7	190	1，300	35	1，335	2，878
15：30	to	16：30	122	2	124	1，231	32	1，263	181	6	187	1，301	33	1，334	2，908
15：45	to	16：45	116	2	118	1，241	34	1，275	168	3	171	1，300	30	1，330	2，894
16：00	to	17：00	125	2	127	1，269	24	1，293	163	0	163	1，377	18	1，395	2，978
16：15	to	17：15	120	2	122	1，291	21	1，312	153	0	153	1，363	15	1，378	2，965
16：30	to	17：30	117	1	118	1，222	20	1，242	156	0	156	1，372	14	1，386	2，902
16：45	to	17：45	120	0	120	1，159	15	1，174	171	0	171	1，335	14	1，349	2，814
17：00	to	18：00	114	0	114	1，021	16	1，037	156	0	156	1，278	14	1，292	2，599
17：15	to	18：15	114	0	114	926	13	939	149	0	149	1，194	13	1，207	2，409
17：30	to	18：30	101	0	101	793	17	810	141	0	141	1，058	8	1，066	2，118
PM Totals			469	6	475	4，382	97	4，479	650	9	659	4，960	91	5，051	10，664

Job No．	：AUQLD3388
Client	：Lambert \＆Rehbein（SEQ）Pty Ltd
Suburb	：Cleveland
Location	： 2 Finucane Rd （

Day／Date Tue， 29 Mar 2022WeatherDescription ：Classified Intersection Count：Peak Hour Summary
：Classified Intersection Count
Peak Hour Summary

Approach				Finucane Rd			Dawson Rd			Finucane Rd			
Time Period				$\begin{aligned} & \text { n } \\ & \text { 壹 } \end{aligned}$		厄i厄	$\begin{aligned} & \text { 喜 } \\ & \substack{\text { n }} \end{aligned}$	$\stackrel{\check{0}}{\stackrel{y}{z}}$	$\overline{\mathrm{g}}$	$\begin{aligned} & \text { n } \\ & \text { 吉 } \end{aligned}$		$\overline{\mathrm{E}}$	
AM	7：45	to	8：45	1，501	41	1，542	97	4	101	1，431	51	1，482	3，125
PM	16：00	to	17：00	1，372	30	1，402	53	1	54	1，450	12	1，462	2，918

Approach	Finucane Rd			Dawson Rd			Finucane Rd			
Time Period	$\begin{aligned} & \text { n } \\ & \hline \underline{\text { an }} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \stackrel{0}{x} \end{aligned}$	$\begin{gathered} \text { 厄iّ } \\ \hline \end{gathered}$			$\stackrel{\text { 「 }}{\stackrel{5}{6}}$		$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{0} \\ & \text { anx } \end{aligned}$	$\begin{gathered} \text { 厄゙厄 } \\ \hline \end{gathered}$	
6：00 to 7：00	1，009	26	1，035	51	2	53	624	33	657	1，745
6：15 to 7：15	1，148	25	1，173	60	2	62	674	40	714	1，949
6：30 to 7：30	1，209	33	1，242	60	3	63	771	34	805	2，110
6：45 to 7：45	1，229	36	1，265	66	2	68	869	41	910	2，243
7：00 to 8：00	1，299	35	1，334	78	1	79	1，041	50	1，091	2，504
7：15to $8: 15$	1，340	43	1，383	90	1	91	1，269	46	1，315	2，789
7：30 to 8：30	1，412	39	1，451	102	2	104	1，380	57	1，437	2，992
7：45to $8: 45$	1，501	${ }^{41}$	1，542	97	4	101	1，431	51	1，482	3，125
8：00 to 9：00	1，483	52	1，535	93	5	98	1，364	44	1，408	3，041
AM Totals	3，791	113	3，904	222	8	230	3，029	127	3，156	7，290
14：30to $15: 30$	1，266	32	1，298	53	2	55	1，430	39	1，469	2，822
14：45 to $15: 45$	1，323	42	1，365	55	4	59	1，414	40	1，454	2，878
15：00 to 16：00	1，280	45	1，325	54	3	57	1，439	37	1，476	2，858
15：15 to $16: 15$	1，358	44	1，402	51	3	54	1，411	36	1，447	2，903
15：30 to $16: 30$	1，339	45	1，384	59	3	62	1，356	29	1，385	2，831
15：45 to 16：45	1，356	35	1，391	51	1	52	1，418	19	1，437	2，880
16：00 to 17：00	1，372	30	1，402	53	1	54	1，450	12	1，462	2，918
16：15 \quad to 17715	1，285	25	1，310	57	2	59	1，457	11	1，468	2，837
16：30 to 17730	1，277	19	1，296	55	3	58	1，462	11	1，473	2，827
16：45 \quad to 17745	1，158	18	1，176	63	3	66	1，383	14	1，397	2，639
17：00 to 18：00	1，071	14	1，085	64	4	68	1，343	13	1，356	2，509
17：15 \quad to $18: 15$	962	18	980	55	3	58	1，228	10	1，238	2，276
17：30 to 18：30	845	16	861	58	3	61	1，103	10	1，113	2，035
PM Totals	4，727	112	4，839	225	11	236	5，351	89	5，440	10，515

Approach			Delancey St			Shore St \mathbf{W}			Delancey St			Finucane Rd			
Time Period			$\begin{aligned} & \text { n } \\ & \text { 喜 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { Ð. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 皆 } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{2} \\ & \text { ax } \end{aligned}$	$\begin{array}{\|} \stackrel{\text { ®. }}{\circ} \\ \hline \end{array}$	$\begin{aligned} & \text { n } \\ & \stackrel{y}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { u } \\ & \stackrel{0}{2} \\ & \text { axi } \end{aligned}$	$\begin{gathered} \text { Ð. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & \text { n} \\ & \substack{\text { non } \\ \hline} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \text { Ð. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{array}$	
6:00	to	7:00	434	8	442	554	12	566	152	4	156	643	30	673	1,837
6:15	to	7:15	479	9	488	666	16	682	191	5	196	719	43	762	2,128
6:30	to	7:30	498	11	509	695	24	719	240	5	245	820	35	855	2,328
6:45	to	7:45	556	15	571	707	22	729	260	5	265	932	40	972	2,537
7:00	to	8:00	606	13	619	733	26	759	339	5	344	1,097	52	1,149	2,871
7:15	to	8:15	673	15	688	746	27	773	410	8	418	1,309	43	1,352	3,231
7:30	to	8:30	711	12	723	805	25	830	483	10	493	1,454	56	1,510	3,556
7:45	to	8:45	727	10	737	890	32	922	511	11	522	1,492	53	1,545	3,726
8:00	to	9:00	706	14	720	879	36	915	492	13	505	1,422	47	1,469	3,609
AM Totals			1,746	35	1,781	2,166	74	2,240	983	22	1,005	3,162	129	3,291	8,317
14:30	to	15:30	583	8	591	837	27	864	366	6	372	1,437	39	1,476	3,303
14:45	to	15:45	606	13	619	805	30	835	447	10	457	1,426	40	1,466	3,377
15:00	to	16:00	604	11	615	786	28	814	476	12	488	1,444	41	1,485	3,402
15:15	to	16:15	670	10	680	785	27	812	439	12	451	1,420	37	1,457	3,400
15:30	to	16:30	642	12	654	794	24	818	428	12	440	1,396	33	1,429	3,341
15:45	to	16:45	678	11	689	830	18	848	384	6	390	1,442	22	1,464	3,391
16:00	to	17:00	652	10	662	859	18	877	417	3	420	1,443	13	1,456	3,415
16:15	to	17:15	579	9	588	849	14	863	437	1	438	1,470	12	1,482	3,371
16:30	to	17:30	570	7	577	857	13	870	429	3	432	1,448	12	1,460	3,339
16:45	to	17:45	490	3	493	780	14	794	389	4	393	1,399	16	1,415	3,095
17:00	to	18:00	453	1	454	712	13	725	335	5	340	1,354	16	1,370	2,889
17:15	to	18:15	409	1	410	641	15	656	296	6	302	1,239	14	1,253	2,621
17:30	to	18:30	355	3	358	568	12	580	257	3	260	1,140	11	1,151	2,349
PM Totals			2,150	30	2,180	3,056	76	3,132	1,480	24	1,504	5,421	95	5,516	12,332

	Approach			Wellington St			Shore St W			Wellington St			Shore St W			
	Time Period			$\begin{gathered} \text { 毕 } \\ \substack{\text { an }} \\ \hline \end{gathered}$		$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \substack{\text { an } \\ \hline} \\ & \hline \end{aligned}$		$\begin{array}{\|} \overline{\mathrm{I}} \\ \stackrel{\rightharpoonup}{\mathrm{O}} \\ \hline \end{array}$	$\begin{aligned} & \text { n } \\ & \substack{\text { non } \\ \hline} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{\widetilde{0}} \\ & \text { anc } \end{aligned}$	$$	$\begin{aligned} & \text { n } \\ & \text { 喜 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { Ð. } \\ \hline \end{gathered}$	
AM	8：00	to	9：00	589	33	622	938	32	970	823	19	842	1，119	30	1，149	3，583
PM	16：15	to	17：15	619	8	627	1，011	21	1，032	603	9	612	1，068	9	1，077	3，348

	proa			ingt			res			lingto			re St		
Tim	Per	iod	$\begin{aligned} & \text { n } \\ & \substack{\text { nom } \\ \hline} \\ & \hline \end{aligned}$		$\begin{gathered} \text { Ð. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$		$\begin{aligned} & \underline{0} \\ & \stackrel{y}{\sqrt{0}} \\ & \text { In } \end{aligned}$	$\begin{gathered} \text { 厄iّ } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 号 } \\ & \text { 品 } \end{aligned}$	$\stackrel{y}{0}$ $\stackrel{\rightharpoonup}{0}$ in	$\begin{gathered} \text { Ð. } \\ \hline \end{gathered}$			$\begin{array}{\|} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$	－
6：00	to	7：00	283	28	311	514	15	529	366	4	370	423	26	449	1，659
6：15	to	7：15	325	19	344	567	14	581	420	4	424	467	33	500	1，849
6：30	to	7：30	349	25	374	628	19	647	495	3	498	550	36	586	2，105
6：45	to	7：45	395	26	421	674	20	694	561	9	570	641	33	674	2，359
7：00	to	8：00	424	26	450	717	20	737	614	13	627	763	41	804	2，618
7：15	to	8：15	458	27	485	763	26	789	697	16	713	896	41	937	2，924
7：30	to	8：30	507	27	534	836	23	859	738	20	758	1，026	34	1，060	3，211
7：45	to	8：45	561	30	591	892	25	917	811	19	830	1，118	38	1，156	3，494
8：00	to	9：00	589	33	622	938	32	970	823	19	842	1，119	30	1，149	3，583
	Tot		1，296	87	1，383	2，169	67	2，236	1，803	36	1，839	2，305	97	2，402	7，860
14：30	to	15：30	550	21	571	914	24	938	610	17	627	975	31	1，006	3，142
14：45	to	15：45	561	16	577	895	21	916	631	17	648	1，090	25	1，115	3，256
15：00	to	16：00	555	15	570	864	19	883	671	19	690	1，105	30	1，135	3，278
15：15	to	16：15	586	12	598	829	16	845	698	20	718	1，106	25	1，131	3，292
15：30	to	16：30	605	12	617	856	14	870	674	17	691	1，112	26	1，138	3，316
15：45	to	16：45	614	13	627	955	20	975	655	14	669	1，013	23	1，036	3，307
16：00	to	17：00	636	10	646	979	20	999	629	12	641	1，018	12	1，030	3，316
16：15	to	17：15	619	8	627	1，011	21	1，032	603	9	612	1，068	9	1，077	3，348
16：30	to	17：30	598	6	604	984	21	1，005	618	8	626	1，087	9	1，096	3，331
16：45	to	17：45	601	4	605	918	20	938	610	5	615	1，078	10	1，088	3，246
17：00	to	18：00	554	7	561	840	16	856	608	4	612	1，055	12	1，067	3，096
17：15	to	18：15	515	8	523	755	16	771	617	4	621	973	12	985	2，900
17：30	to	18：30	479	5	484	680	14	694	551	3	554	905	9	914	2，646
PM Totals			2，232	44	2，276	3，434	73	3，507	2，453	45	2，498	4，079	75	4，154	12，435

Job No．	：AUQLD3388
Client	：Lambert \＆Rehbein（SEQ）Pty Ltd
Suburb	$:$ Cleveland
Location	$: 5$. Wellington St／Russell St
Day／Date	：Tue，29 Mar 2022
Weather	：Fine
Description	$:$ Classified Intersection Count
	$:$ Peak Hour Summary

Approach			Wellington St			Russell St			Wellington St			Russell St			
Time Period			$\begin{aligned} & \text { n } \\ & \text { 吉 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { y } \\ & \stackrel{y}{0} \\ & \text { an } \end{aligned}$	戸.	$\begin{aligned} & \text { n } \\ & \hline ⿳ 士 口 䒑 口 灬 ~ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { y } \\ & \stackrel{y}{0} \\ & \text { an } \end{aligned}$	戸	$\begin{aligned} & \text { n } \\ & \stackrel{y}{\mathrm{w}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & \stackrel{0}{x} \end{aligned}$		$\begin{aligned} & \text { 皆 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { 厄iّn } \\ \hline \end{gathered}$	
6：00	to	7：00	442	25	467	208	3	211	380	17	397	148	4	152	1，227
6：15	to	7：15	482	17	499	239	5	244	374	15	389	191	4	195	1，327
6：30	to	7：30	530	18	548	246	5	251	445	9	454	227	4	231	1，484
6：45	to	7：45	556	26	582	252	3	255	500	7	507	252	3	255	1，599
7：00	to	8：00	586	24	610	308	5	313	563	12	575	274	2	276	1，774
7：15	to	8：15	641	22	663	358	4	362	630	18	648	320	3	323	1，996
7：30	to	8：30	665	26	691	422	7	429	631	21	652	386	6	392	2，164
7：45	to	8：45	713	23	736	497	9	506	622	27	649	447	10	457	2，348
8：00	to	9：00	715	24	739	491	9	500	578	28	606	440	11	451	2，296
AM Totals			1，743	73	1，816	1，007	17	1，024	1，521	57	1，578	862	17	879	5，297
14：30	to	15：30	653	22	675	335	4	339	519	28	547	399	11	410	1，971
14：45	to	15：45	692	18	710	355	6	361	534	26	560	403	10	413	2，044
15：00	to	16：00	683	17	700	344	5	349	559	24	583	414	11	425	2，057
15：15	to	16：15	753	14	767	335	4	339	581	20	601	437	12	449	2，156
15：30	to	16：30	757	14	771	345	6	351	587	18	605	464	8	472	2，199
15：45	to	16：45	746	14	760	340	6	346	594	13	607	479	7	486	2，199
16：00	to	17：00	742	9	751	361	7	368	566	12	578	519	4	523	2，220
16：15	to	17：15	692	7	699	329	7	336	592	8	600	542	2	544	2，179
16：30	to	17：30	675	5	680	296	5	301	589	8	597	540	2	542	2，120
16：45	to	17：45	626	4	630	280	2	282	565	8	573	511	2	513	1，998
17：00	to	18：00	593	6	599	232	1	233	550	8	558	478	2	480	1，870
17：15	to	18：15	583	6	589	209	1	210	515	7	522	439	2	441	1，762
17：30	to	18：30	530	6	536	192	1	193	491	5	496	386	3	389	1，614
PM Totals			2，615	47	2，662	1，168	16	1，184	2，186	59	2，245	1，789	24	1，813	7，904

	proac			ngt			eth			ngt			th 5		
	Peri		$\begin{aligned} & \text { n } \\ & \stackrel{5}{\mathrm{y}} \\ & \hline \end{aligned}$	$\stackrel{0}{0}$ $\stackrel{y}{d}$ in	$\begin{gathered} \text { Ð. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 毕 } \\ & \text { 品 } \end{aligned}$		$\stackrel{\overline{50}}{\stackrel{1}{2}}$	$\begin{aligned} & \text { n } \\ & \text { 吉 } \\ & \hline \end{aligned}$		$\begin{gathered} \text { ■. } \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 告 } \\ & \text { 喜 } \end{aligned}$	$\begin{aligned} & \stackrel{\ddot{0}}{3} \\ & \stackrel{y}{0} \\ & \text { in } \end{aligned}$	$\begin{gathered} \stackrel{Ð}{\circ} \\ \stackrel{\rightharpoonup}{2} \end{gathered}$	－
6：00	to	7：00	310	15	325	0	0	0	358	2	360	45	1	46	731
6：15	to	7：15	346	18	364	3	0	3	418	1	419	62	1	63	849
6：30	to	7：30	392	19	411	6	0	6	473	3	476	72	1	73	966
6：45	to	7：45	439	23	462	6	0	6	530	7	537	73	1	74	1，079
7：00	to	8：00	462	20	482	6	0	6	589	12	601	102	2	104	1，193
7：15	to	8：15	508	17	525	5	0	5	624	13	637	123	1	124	1，291
7：30	to	8：30	553	16	569	2	0	2	680	12	692	167	6	173	1，436
7：45	to	8：45	563	17	580	4	0	4	684	11	695	212	7	219	1，498
8：00	to	9：00	557	18	575	4	0	4	637	12	649	214	7	221	1，449
	Tota		1，329	53	1，382	10	0	10	1，584	26	1，610	361	10	371	3，373
14：30	to	15：30	648	11	659	8	1	9	552	14	566	136	3	139	1，373
14：45	to	15：45	655	9	664	9	1	10	547	17	564	165	3	168	1，406
15：00	to	16：00	667	9	676	19	0	19	575	19	594	164	2	166	1，455
15：15	to	16：15	714	7	721	34	0	34	538	15	553	159	2	161	1，469
15：30	to	16：30	728	7	735	39	0	39	524	15	539	162	2	164	1，477
15：45	to	16：45	749	7	756	39	0	39	522	12	534	140	2	142	1，471
16：00	to	17：00	743	6	749	32	0	32	504	9	513	125	2	127	1，421
16：15	to	17：15	769	6	775	14	0	14	524	8	532	142	2	144	1，465
16：30	to	17：30	761	6	767	10	0	10	537	3	540	129	1	130	1，447
16：45	to	17：45	768	5	773	9	0	9	503	2	505	112	1	113	1，400
17：00	to	18：00	739	7	746	15	0	15	515	2	517	117	1	118	1，396
17：15	to	18：15	665	7	672	25	0	25	470	0	470	86	1	87	1，254
17：30	to	18：30	629	7	636	25	0	25	423	0	423	80	1	81	1，165
PM Totals			2，766	31	2，797	82	1	83	2，036	32	2，068	507	7	514	5，462

Approach	Delancey St			Freeth St W			Delancey St				
Time Period	$\begin{aligned} & \text { n } \\ & \text { 喜 } \\ & \hline \end{aligned}$						$\begin{aligned} & \text { n } \\ & \stackrel{5}{\mathrm{y}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { u } \\ & \stackrel{0}{2} \\ & \text { axi } \end{aligned}$	$\begin{gathered} \text { 厄゙ँ } \\ \hline \end{gathered}$		
6：00 to 7：00	101	0	101	58	3	61	159	3	162		324
6：15 to 7：15	134	2	136	80	3	83	205	2	207		426
6：30 to 7：30	149	3	152	90	2	92	250	2	252		496
6：45 to 7：45	184	4	188	103	2	105	282	3	285		578
7：00 to 8：00	231	8	239	126	2	128	344	3	347		714
7：15 ${ }^{\text {to }} 8: 15$	318	9	327	139	3	142	401	4	405		874
7：30 to 8：30	404	14	418	160	3	163	496	11	507		1，088
7：45 \quad to $8: 45$	438	17	455	182	3	185	596	12	608		1，248
8：00 \quad to 9：00	426	15	441	173	4	177	571	12	583		1，201
AM Totals	758	${ }^{23}$	781	357	9	366	1，074	18	1，092		2，239
14：30 to 15：30	412	9	421	164	5	169	292	4	296		886
14：45 to 15：45	440	11	451	167	6	173	386	8	394		1，018
15：00 to 16：00	387	10	397	150	8	158	441	8	449		1，004
15：15 to 16：15	369	10	379	143	6	149	396	10	406		934
15：30 to 16：30	356	9	365	132	3	135	388	11	399		899
15：45 to 16：45	363	6	369	150	2	152	345	5	350		871
16：00 to 17：00	378	4	382	153	0	153	352	4	356		891
16：15 to 17：15	377	3	380	155	0	155	389	1	390		925
16：30 to 17：30	379	4	383	174	2	176	375	3	378		937
16：45 to 17：45	346	5	351	170	2	172	316	4	320		843
17：00 to 18：00	320	6	326	176	3	179	273	4	277		782
17：15 to 18：15	286	6	292	165	3	168	239	5	244		704
17：30 to 18：30	243	4	247	139	1	140	202	2	204		591
PM Totals	1，390	26	1，416	609	11	620	1，257	20	1，277		3，313

APPENDIX C- TRAFFIC MOVEMENT DIAGRAMS

APPENDIX D- MICRO SIMLUATION MODELLING REPORT

a
 danner

Private Hospital Finuc ane ROAD - AcCESS ANALYSIS

Mic ro-simulation modelling

Analysis of the traffic impacts of a proposed private hospital with access onto Finucane Road, Cleveland

Charles Reeler
Version 1
8/07/2022

Prepared by Adanner Pty Ltd for [insert client name]

Report version control

Version	Date	Author	Change Description
1	$8 / 07 / 2022$	Charles Reeler	DRAFT
2	$8 / 07 / 2022$	Charles Reeler	FINAL

© 2022 Adanner Pty Ltd
Disclaimer: Adanner Pty Ltd (Adanner) has prepared this report for the sole use of [insert client name] (the Client) and for the intended purposes as stated in the agreement between the Client and Adanner under which this work was completed. The report may not be relied upon by any other party without the express written agreement of Adanner.
Adanner has exercised due care in carrying out the work detailed in this report but has not, save as specifically stated, independently verified information provided by others. No other warranty, express or implied is made in relation to this work or the contents of this report. Therefore, Adanner assumes no liability for any loss resulting from errors, omissions or misrepresentations made by others. This report has been prepared at the request of the Client. The use of this report by unauthorised third parties without written authorisation from Adanner shall be at their own risk and Adanner accepts no duty of care to any such third party.
Any recommendations, opinions or findings stated in this report are based on circumstances and facts as they existed at the time Adanner performed the work. Any changes in such circumstances and facts upon which this report is based may adversely affect any recommendations, opinions or findings contained in this report.

No part of this report may be copied or duplicated without the express written permission of the Client and Adanner.

TABLE OF CONTENTS

1 Background 4
2 Methodology 5
2.1 Study Area 5
2.2 Proposed Land Use and Trip Generation 6
2.3 Simulation Model Network 9
2.4 Traffic Signal Data 10
2.5 Model Software 11
2.6 Calibration of 2022 Ba se Case Models 11
2.6.1 R-Squared 12
2.6.2 Tum Volume Calibration 13
3 Modelling Results 17
3.1 Performance Criteria 17
3.2 Modelled Scenarios. 17
3.2.1 Scena rio 1 - Existing Situation 18
3.2.2 Scenario 2 - Existing Network with Development Traffic 19
3.2.3 Scenario 3 - Upgrade 1 21
3.2.4 Scenario 4 - Upgrade 2 23
3.2.5 Scenario 5 - Upgrade 3. 25
3.3 Intersection Performance 25
3.4 Network Performance 26
4 Conclusions 28

1 BACKGROUND

A private hospital with mixed-use development has been proposed to be developed on the corner of Finucane Road and Delancey Street in Cleveland. There is an existing access on Delancey Street servicing the current development however with further development of this site this existing access will be inadequate for the predicted traffic demands.
A second access to the development site is therefore proposed on Finucane Road to meet the increased traffic demands to and from the site.

The purpose of this document is to provide the results of an assessment of the traffic impacts of proposed development at the new Finucane Road access, the impact of the development on the surrounding road network and to identify mitigating measures to address the increased traffic demands.

This report documents the findings of the micro-simulation modelling carried out for this investigation.

2 METHODOLOGY

2.1 Study Area

Figure 1 shows the site of the private hospital and proposed mixed development and the surrounding road network that has been included in the simulation modelling.
The study area extends from McDonald Road in the west to Wellington Street in the east and from Russel Street in the south to Freeth Street in the north. Seven intersections are included in the study are as shown in the figure below.

Figure 1 Study Area
The intersections included in the models are:

1. Finucane Road / McDonald Road
2. Finucane Road / Dawson Road
3. Finucane Road / Delancey Street
4. Finucane Road / Wellington Street
5. Wellington Street / Russel Street
6. Wellington Street / Freeth Street
7. Delancey Street / Freeth Street

The development site is located in the north west corner of the intersection of Finucane Road and Delancey Street. There is an existing access to the current site off Delancey Street opposite the Arthur Street intersection. The new second access is proposed off Finucane Road at the western end of the development site as shown below (site dimensions and access location - not to scale).

Figure 2 Site Location and Accesses

2.2 Proposed Land Use and Tip Generation

Previous studies investigating the proposed development and accesses have been carried out by Lambert \& Rehbein (L\&R). These studies include detailed trip generation rates for the development as well as assignment to and from the development site for the weekday AM and PM peak periods. These assumptions are documented in the L\&R document titled: "Technical Note - Proposed Hospital ad M ixed Use Development, Cnr Finucane Road \& Delancey Street, Qld 4160, Access Intersection Analysis", dated 10/11/2021.

For the purposes of this analysis, the same trip generation and assignment assumptions have been assumed (albeit with slight changes as described in the following sections). In summary the proposed development mix is presented in the following table (extract from the L\&R document):

USE	YIELD	
PRIVATE HOSPITAL	148 BEDS + 14 THEATRES	$22,411 \mathrm{~m}^{2}$ GFA
DAY SURGERY	18 Day Beds	
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	-	$1,200 \mathrm{~m}^{2}$ GFA
CHILD CARE	150 PLACES	$6,213 \mathrm{~m}^{2}$ GFA
SPECIAL RETAIL	-	$4,407 \mathrm{~m}^{2}$ GFA
RESEARCH INSTITUTE	-	$25,000 \mathrm{~m}^{2}$ GFA
ASSISTED LIVING UNIT \& FACILITIES	200 UNITS + FACILITIES	$11,163 \mathrm{~m}^{2}$ GFA
AGED CARE	134 BEDS + Ancilary Area	$2,000 \mathrm{~m}^{2}$ GFA
COMMUNITY HUB	-	$77,008 \mathrm{~m}^{2}$ GFA
TOTAL		

Table 1 Proposed Development Yields

Based on these yields the trip generation for the development was estimated using the trip generation rates and directionality as shown in the following table.

LAND USE	GENERATION RATE		DIRECTIONALITY (\% IN / \% OUT)		SOURCE
	AM Peak	PM Peak	AM Peak	PM Peak	
PRIVATE HOSPITAL	$\begin{aligned} & -22.07 \text { trips }+1.04 \\ & \text { trips } \times \text { beds } \end{aligned}$	$\begin{gathered} -22.07 \text { trips }+1.04 \\ \text { trips } \times \text { beds } \end{gathered}$	50\% in / 50\% out	50% in / 50\% out	RMS (formally RTA)
DAY SURGERY					
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	${\underset{\text { GFA }}{ } 9.81 \text { trips / } 100 \mathrm{~m}^{2}}^{\text {and }}$	$\begin{gathered} 5.80 \text { trips } / 100 \mathrm{~m}^{2} \\ \text { GFA } \end{gathered}$	50% in / 50\% out	50% in / 50% out	DTMR Open Source Data
CHILD CARE	0.8 trips / child	0.7 trips / child	50% in / 50% out	50% in / 50\% out	RMS (formally RTA)
SPECIAL RETAIL	2.8 trips / $100 \mathrm{~m}^{2}$ GFA	5.6 trips / $100 \mathrm{~m}^{2}$ GFA	50% in / 50% out	50% in / 50% out	RMS (formally RTA)
RESEARCH INSTITUTE	2 trips / $100 \mathrm{~m}^{2}$ GFA	2 trips / $100 \mathrm{~m}^{2}$ GFA	90\% in / 10\% out	10\% in / 90% out	RMS (formally RTA)
ASSISTED LIVING UNIT \& FACILITIES	0.2 trips per dwelling	0.2 trips per dwelling	80% in / 20% out	20\% in / 80\% out	RMS (formally RTA)
AGED CARE	0.2 trips per dwelling	0.2 trips per dwelling	80% in / 20% out	20\% in / 80\% out	RMS (formally RTA)

Table 2 Trip Generation and Directionality Rates

With these laned uses and trip generation assumptions, the trip generation of the development was determined as follows:

LAND USE	YIELD	AM(IN)	AM (OUT)	PM (IN)	PM (OUT)
PRIVATE HOSPITAL	$\begin{gathered} 148 \text { BEDS + } 14 \\ \text { THEATRES } \end{gathered}$	75	75	75	75
DAY SURGERY	18 Day Beds				
MEDICAL SPECIALISTS IN CONSULTING SUITES BLDG	4,614 m ${ }^{2}$ GFA	226	226	134	134
CHILD CARE	150 PLACES	60	60	53	53
SPECIAL RETAIL	6,213 m ${ }^{2}$ GFA	87	87	174	174
RESEARCH INSTITUTE	$4,407 \mathrm{~m}^{2}$ GFA	79	9	9	79
ASSISTED LIVING UNIT \& FACILITIES	200 UNITS + FACILITIES	32	8	8	32
AGED CARE	134 BEDS + Ancillary Area	21	5	5	21
COMMUNITY HUB	2,000 m ${ }^{2}$ GFA	-	-	-	-
Total Trips per Peak (10\% Cross-Utilisation)		524	424	412	512

Table 3 Development Traffic Generation
These trips were then assigned with the basic assumptions that the existing access on Delancey Road would attract 20% of the trips and the new Finucane Road access would attract the remaining 80% of the trips.
For the purposes of this micro-simulation analysis these assumptions were slightly modified.
The current access on Delancey Street allows all movements. With the proposed development the movements at this access will change to left-in, left-out and right-in only. No right-turns out of the site onto Delancey Street will be permitted. As a result, the assumption is that vehicles leaving the site and travelling south to Wellington Street and Russell Street will use the main access on Finucane Road.
It was also assumed that vehicles to and from the west on Finucane Road would all use the "M ain" access on Finucane Road rather than travel past this access to the access on Delancey Street. Similarly, it was assumed that vehicles to and from Delancey Street (to the north) and Wellington Street (to the north) would all use the Delancey Street access rather than travel past this access to the Finucane Road access. These assumptions are illustrated in the following figures showing the routes to and from the two access points from the various trip generation zones.

Figure $3 \quad$ Trips to and from Finucane Road access

Figure $4 \quad$ Trips to and from Delancey Street access
With these assumptions the original 80:20 split between the Finucane Road and Delancey Street accesses changed to 77:23.

Directional Split between accesses	Original split		Reassigned split	
	AM	PM	AM	PM
Finucane	80%	80%	77%	77%
Delancey	20%	20%	23%	23%

Table 4 Directional Split of Trips to and from the Development
The trip generation (OD matrices) for this reassignment is shown in more detail in Annexure A.

2.3 Simulation Model Network

As mentioned previously, the study area comprises

- Finucane Road from M cDonald Road in the west to Wellington Street in the east
- Wellington Street from Russel Street in the south to Freeth Street in the north
- Delancey Street / Russel Street from Wellington Street in the south to Freeth Street in the north

There are 7 intersections in the network with 11 'external' trip generation zones. Additional zones were added to the network to act as sinks or generators to balance the trips arriving at and departing from the seven intersections where traffic count data is known.

In addition, an $8^{\text {th }}$ intersection was added at the location of the proposed new access to the development on Finucane Road. The development site was also allocated two separate zones, one for the Finucane Road access and one for the Delancey Street access. The full simulation network showing the trip generation zones and the new access is presented in the following figure. Zones 15 and 18 are the zones allocated to the development.

Figure 5 Simulation network and trip generation zones

2.4 Traffic Signal Data

Traffic signal data was provided for the following intersections:

- Finucane Road / McDonald Road
- Finucane Road / Delancey Street
- Wellington Street / Russell Street

The data provided comprised the signal phase sequences and actual timing data (length of time for each phase in M ay 2022). While the signal phasing data specifies the cycle lengths during the peak periods (160 sec AM peak and 130 sec PM Peak), the actual phase times data varies so that the actual cycle times varied and were not always equal to the stated cycle times.

For the purposes of the modelling, it was therefore assumed that the signals are isolated and operate under actuated control in the Base case models. The limits of the variability of the signal phases were then set to the minimums and maximums as recorded in the data provided.

2.5 Model Software

The simulation software used for this analysis is AIM SUN Next 20 (Version 20). (Note that using a different version of the software may result in slight changes to the results).

2.6 Calibration of 2022 Base Case Models

For this analysis, the Base M odel is defined as the 2022 network as the calibration is based on the turn count data collected in M arch 2022.
The initial demand matrices were derived by assignment of trips between zones using a proportional distribution based on the volumes of attractions and generations to and from each zone. The models were then run to generate modelled turn flows at each intersection which were then compared to the count data. Based on these results, some manual adjustments were made to specific OD pairs so that an acceptable calibration could be achieved. The final manual adjustments included adding trips to and from the internal 'sink' zones. This iterative process was carried out until suitable calibration was achieved.

While route choices in the models are limited, there are certain route choices that required some minor adjustments to the default attributes in the software. Attribute overrides (additional delays) were applied at two locations, namely:

- In the AM Peak at the Wellington / Finucane roundabout (four movements)
- In the AM Peak at the Wellington / Russell intersection (two movements)
- In the PM peak at the Wellington / Finucane and the Wellington / Freeth roundabouts (four movements)
- In the AM Peak at the Wellington / Russell intersection (two movements)

In addition to these changes a number of OD routes were defined to prevent unrealistic route choices:

- Between Finucane east and Finucane west (both directions)
- From Finucane east to Wellington south
- From Finucane east to Russel Street

All models were run for 2 hours (one hour warm-up and the second hour used for all the result reporting). Five seed values were used to replicate the natural variability in daily traffic patterns and all results are based on the average of the five simulation runs. The best calibration was achieved using a proportional distribution whilst allowing on-route path updates using 5-minute calculation intervals.

The criteria for calibration of simulation models are typically based on the R-squared statistic and GEH values (comparison between actual intersection count data and the modelled turn volumes). The calibration criteria with the values from the models is shown in Table 2.

Calibration Criteria	Actual achieved	
	AM	PM
R-squared >0.9	0.987	0.979
GEH <5 in at least 85\% of observations	93%	94%

Table $5 \quad$ Calibration Criteria

2.6.1 R-Squared

The R-squared statistic is presented in the following graphs showing the goodness of fit between the intersection counts and the modelled turn volumes for each peak period.

Figure 6
R-Squared Values for 2022 Base models
These graphs show that the models replicate the count data very well with the R-squared statistic well within the recommended limits.

2.6.2 Tum Volume Calibration

The tables below shows the GEH values for the turn volumes at the intersections for each peak hour.

				COUNT Data		M odelled Volumes			
				AM Peak PM Peak		AM Peak		PM Peak	
Intersection	Approach	Description	Turn	Total	Total	Total	GEH	Total	GEH
1 Finucane / McDonald	South	McDonald	L	3	14	4	0.3	15	0.1
			T	34	25	35	0.1	21	0.6
			R	105	88	97	0.5	87	0.1
			U	0	0	0		0	
	East	Finucane	L	98	117	105	0.5	124	0.5
			T	1,276	1,101	1,309	0.7	1,123	0.5
			R	62	75	65	0.3	80	0.4
			U	0	0	0		0	
	North	McDonald	L	218	87	207	0.5	88	0.0
			T	32	32	31	0.1	31	0.1
			R	47	44	53	0.6	42	0.2
			U	0	0	0		0	
	West	Finucane	L	31	63	32	0.1	56	0.6
			T	1,181	1,319	1,144	0.8	1,358	0.7
			R	9	13	11	0.5	14	0.2
			U	2	0	0	1.4	0	
2 Finucane / Dawson	South		L	0	0	0		0	
			T	0	0	0		0	
			R	0	0	0		0	
			U	0	0	0		0	
	East	Finucane	L	0	0	0		0	
			T	1,458	1,292	1,459	0.0	1,313	0.4
			R	84	110	107	1.7	129	1.2
			U	0	0	0		0	
	North	Dawson	L	89	42	80	0.7	37	0.6
			T	0	0	0		0	
			R	12	12	25	2.2	17	1.0
			U	0	0	0		0	
	West	Finucane	L	16	21	0	4.0	0	4.6
			T	1,466	1,441	1,451	0.3	1,538	1.8
			R	0	0	0		0	
			U	0	0	0		0	
3 Finucane / Delancey	South	Delancey	L	538	506	514	0.8	441	2.1
			T	175	123	104	4.2	105	1.2
			R	24	33	11	2.1	19	1.9
			U	0	0	0		0	
	East	Finucane	L	20	25	23	0.5	0	4.9
			T	770	744	751	0.5	778	0.9
			R	113	66	130	1.1	56	0.9
			U	19	42	0	4.4	28	1.7
	North	Delancey	L	129	113	103	1.7	81	2.3
			T	133	149	91	2.8	162	0.7
			R	260	157	260	0.0	223	3.4
			U	0	1	0		0	1.0
	West	Finucane	L	204	202	241	1.8	214	0.6
			T	1,060	882	976	1.9	1,008	2.9
			R	281	372	300	0.8	336	1.4
			U	0	0	0		0	
4 Finucane / Wellington	South	Wellington	L	163	153	78	5.5	190	2.0
			T	342	399	208	5.7	230	6.7
			R	83	93	77	0.5	127	2.3
			U	3	1	0	1.7	0	1.0
	East	Finucane	L	52	111	66	1.3	87	1.7
			T	658	625	596	1.7	654	0.8
			R	201	250	221	1.0	252	0.1
			U	6	13	0	2.4	0	3.6
	North	Wellington	L	245	209	296	2.2	192	0.8
			T	451	334	405	1.6	248	3.6
			R	127	92	182	3.1	71	1.6
			U	7	6	0	2.6	0	2.4
	West	Finucane	L	85	102	84	0.0	138	2.3
			T	680	598	687	0.2	624	0.7
			R	331	275	314	0.7	348	2.9
			U	60	55	5	6.8	19	4.2

				COUNT Data		M odelled Volumes			
				AM Peak PM Peak		AM Peak		PM Peak	
Intersection	Approach	Description	Turn	Total	Total	Total	GEH	Total	GEH
5 Wellington/ Russell	South	Wellington	L	244	252	296	2.2	297	1.9
			T	414	443	314	3.7	395	1.7
			R	77	55	79	0.1	60	0.5
			U	1	1	0	1.0	0	1.0
	East	Russell	L	42	43	44	0.2	46	0.3
			T	360	247	297	2.4	137	5.6
			R	104	78	103	0.1	205	7.5
			U	0	0	0		0	
	North	Wellington	L	55	64	135	5.8	182	7.5
			T	571	493	569	0.0	466	0.9
			R	23	19	2	4.3	39	2.7
			U	0	2	0		0	1.4
	West	Russell	L	19	31	1	3.9	51	2.2
			T	161	201	97	4.0	86	6.8
			R	277	291	276	0.0	314	0.9
			U	0	0	0		0	
6 Wellington / Freeth	South	Wellington	L	109	115	78	2.3	77	2.7
			T	402	549	418	0.6	526	0.7
			R	15	18	15	0.0	16	0.4
			U					0	
	East	Freeth	L	2	23	3	0.6	24	0.2
			T	1	2	0	0.7	2	0.2
			R	1	7	0	1.0	6	0.3
			U					0	
	North	Wellington	L	1	3	1	0.3	4	0.4
			T	631	461	646	0.4	441	0.7
			R	59	39	58	0.1	77	3.5
			U					0	
	West	Freeth	L	63	59	72	0.8	105	3.6
			T	3	2	2	0.4	4	0.7
			R	151	63	235	4.3	45	1.8
			U					0	
7 Delancey/ Freeth	South	Delancey	L	0	0	0		0	
			T	398	312	331	2.5	231	3.5
			R	57	69	126	5.1	135	4.6
			U	0	1	0		0	1.0
	East	Freeth	L	100	64	66	2.6	89	2.0
			T	0	0	0		0	
			R	84	89	69	1.2	69	1.6
			U	1	0	0	1.0	0	
	North	Delancey	L	142	61	186	2.5	20	4.5
			T	466	295	387	2.7	326	1.2
			R	0	0	0		0	
			U	0	0	0		0	
8 Delancey / Arthur	South	Delancey	L	41	27	37	0.5	29	0.2
			T	463	503	436	0.9	337	5.7
			R	5	5	3	0.8	9	1.0
			U	1	1	0	1.0	0	1.0
	East	Arthur	L	7	8	5	0.6	7	0.3
			T	0	0	0		0	
			R	3	1	5	0.8	2	0.5
			U	0	0	0		0	
	North	Delancey	L	1	7	3	1.0	2	1.6
			T	631	508	438	5.9	404	3.4
			R	12	15	14	0.3	11	0.8
			U	1	1	0	1.0	0	1.0
	West	Site Access	L	14	39	16	0.4	26	1.6
			T	0	0	0		0	
			R	13	29	9	0.8	52	2.6
			U	0	0	0		0	

Table 62022 Base model GEH Values for all turn movements

The focus of the calibration exercise was to replicate the turn volumes at the Finucane Road / Delancey Street intersection as this is the intersection likely to be the most affected by the
development traffic. GEH values of less than 5 (green cells) have been achieved for 93\% and 94\% of all turn movements in the AM and PM peak periods respectively. All the turn movements at the Finucane Road / Delancey Street intersection have GEH values of 5 or less. This is well within the recommended guidelines for calibration. M ore detailed calibration data including light and heavy vehicles volumes is included in Annexure B.

The 2022 Base models are therefore considered to be fit for purpose to be used to evaluate the impact of the proposed new access to the development on Finucane Road.

3 MODEUNG RESULTS

3.1 Performance Criteria

The modelling evaluates the operation of the network and intersections during the weekday AM and PM peak periods. The count data indicates that the peak hours at the Finucane / Delancey intersection are as follows:

- AM Peak: 7:45am to 8:45am
- PM Peak: 4:00pm to 5:00 pm

These peak hours were therefore adopted for the models. The models were all run for 2 hours, one hour prior to the peak hour (warm-up period), and one hour representing the peak hour. Demands from zones on Finucane Road (east and west), M cDonald Road, Russel Street and Wellington Street were profiled so that the releases into the network match the count data profiles.

All models were run with five seed values (RTA specified: 28, $560,2859,7771,86524$) and the reported results are the average for the five seeds.
The performance of the intersections is based on the modelled delays for all turn movements. The approach and intersection delays are a weighted average of the individual turn delays. The LOS criteria for signalized intersections, roundabouts and sign-controlled intersections are as per the following table (same criteria as used by SIDRA):

SIDRA LOS Criteria	Signal	Sign controlled	Roundabout
A	10	10	10
B	20	15	20
C	35	25	35
D	55	35	50
E	80	50	70
F	>80	>50	>70

Table 7 Level of Service Criteria (seconds)

3.2 Modelled Scenarios

To quantify the impact of the development traffic and the proposed upgrades to mitigate the impacts, the following scenarios were modelled:

Scenario	Network	Demands	Signals
1	Base (existing)	Background traffic	Existing
2	Base +development access	Background + development	Existing
3	Base +development access + Upgrade 1	Background + development	Revised for Upgrade 1
4	Base +development access + Upgrade 2	Background + development	Revised for Upgrade 2

Table 8
Modelled Scenarios

3.2.1 Scenario 1 - Existing Situation

These models represent the current operating conditions and serve as a base line or reference against which the other models are compared. As mentioned previously, the Base models used the signal phase times (as provided) and operate under actuated control. With these assumptions and signal control, a suitable calibration was achieved.
The Base model network in the vicinity of the development site is shown in the figure below.

Figure $7 \quad$ Base Model Network
The most important intersection in the network is the Finucane Road / Delancey Street intersection and this intersection effectively controls the operation of the traffic through the
simulation network in the vicinity of the development. The signal phase sequence used in the Base models (as per the data provided) is as follows:

Figure 8 Finucane/Delancey Intersection - Base Model Signal Phase Sequence
The signal data provided and used in the models is contained in Annexure E .

3.2.2 Scenario 2 - Existing Network with Development Traffic

This scenario comprises the inclusion of the development traffic and the new access on Finucane Road to the development. No other changes are made to the road network or the signal operation at the Finucane Road / Delancey Street intersection. The purpose of this scenario is to illustrate the impact the development traffic would have on the road network without any upgrades.

The development access on Finucane Road has a separate right-turn into the development (signalised and only triggered on demand) and two exiting lanes from the development site, also only triggered on demand.

Figure $9 \quad$ Base Network with Development Accesses
The layout of the Finucane Road access intersection is shown below.

Figure 10 Access to Development site from Finucane Road
The signal phasing at this intersection is designed to minimise delays to the through traffic. The proposed signal phasing at the intersection is as follows:

Figure 11 Signal Phasing - Finucane Road Development Access

3.2.3 Scenario 3 - Upgrade 1

The simulation models showed that some delays can occur on the NB approach to the Finucane Road / Delancey Street intersection. Northbound through vehicles on Delancey Street can queue at the stop line of the intersection with queues extending south on Delancey Street to beyond the start of the left-turn slip-lane from Delancey Street to Finucane Road. When this happens, the vehicles turning left cannot get into the left-turn lane and are delayed. To reduce the delays for these vehicles, a potential upgrade would be to extend the left-turn slip-lane so that leftturning vehicles have the ability to get into the left-turn lane without being delayed behind the stopped through traffic. This is shown in the figure below.

Figure 12 Upgrade Option 1 - Lengthened left-turn slip lane from Delancey Street to Finucane Road

In addition to these changes, the lane arrangement on the Delancey Street north approach was also altered by changing the lane configuration from a right-turn lane and a through lane to a right-turn lane and a shared through/right-turn lane.

Figure 13 Finucane Road / Delancey Street - Lane arrangement
As the Finucane Road access intersection is relatively close to the Finucane Road / Delancey Street intersection (approximately 330m), the signals have been co-ordinated to encourage progression and to minimise delays. As a result, the signal phasing at the Finucane Road / Delancey Street intersection is no longer isolated but runs actuated and is co-ordinated with the signal at the development site access. The cycle times used are 160 seconds in the AM peak and 130 seconds in the PM peak (as these are the cycle times that are specified in the signal data received).
With this arrangement, it was found that some benefits could be achieved by some changes to the signal phasing at the Finucane Road / Delancey Street intersection by introducing a rightturn phase from Finucane Road EB to Delancey Street SB (last phase in the sequence below). (Note that this additional phase is already in the options for the signal currently in use however the data provided appears to indicate that this signal phase was not triggered).

Figure 14 Finucane/Delancey Intersection - Upgrade 1 Signal Phasing with Development

3.2.4 Scenario 4 - Upgrade 2

In this scenario a further upgrade to the Finucane Road / Delancey Street intersection is proposed comprising the addition of a second right-turn lane from Finucane Road EB to Delancey Street SB. This will require some widening of Delancey Street south of the intersection to accommodate the dual right-turn lanes. This "Upgrade 2" option is shown in the figure below.

Figure $15 \quad$ Upgrade Option 2 - Dual right-turn lane Finucane Road to Delancey Street
With this option the previous signal phases are not appropriate because the opposing rightturns (4 ${ }^{\text {th }}$ phase - EB to SB and WB to NB) cannot occur in the same phase. The signal phase sequence proposed for this option is as follows:

Figure 16 Finucane/Delancey Intersection - Upgrade 2 Signal Phasing with Development and dual right-turn lanes

The additional capacity provided by the second right-turn lane from Finucane Road means that more green time can be allocated to the east-west through movements as well as to the traffic on the Delancey Street north and south approaches to the intersection. This also encourages traffic to use Delancey Street to Wellington Street rather than proceeding east on Finucane Road to Wellington Street via the Wellington Street / Finucane Road roundabout which is the most congested during peak periods.

3.2.5 Scenario 5 - Upgrade 3

This scenario is similar to Scenario 4 but with a relatively minor change to the lane arrangement on Finucane Road east approach to the intersection. In this option the left-turn movement is combined with the through movement in the kerbside lane with a through lane and a right-turn lane.

This "Upgrade 3" option is shown in the figure below.

Figure $17 \quad$ Upgrade Option 3 - Dual right-turn lane Finucane Road to Delancey Street
Changing this east approach may help facilitate providing the dual right-turn lanes on the west approach while minimising the construction impacts.

3.3 Intersection Performance

The performance of the network is based on the modelled delays at all the intersections in the network. From the model outputs the intersection level of service (LOS) can then be determined for each turn movement, each approach and each intersection. A summary of the intersection performance results using delay as the performance metric to determine the LOS is shown in the table below.

Intersection LOS	AM					PM				
	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Intersection	Base Network	Base + development	Base with development + $\text { Upgrade } 1$	Base with development + Upgrade 2	\qquad	Base Network	Base + development	Base with development + Upgrade 1	Base with development + Upgrade 2	Base with development + Upgrade 2
1 Finucane / McDonald	C	C	D	C	C	C	C	C	C	C
2 Finucane / Dawson	A	A	A	A	A	A	A	A	A	A
3 Finucane / Delancey	E	E	E	D	D	E	E	D	C	C
4 Finucane / Wellington	C	D	C	C	C	B	C	C	C	C
5 Wellington / Russell	E	E	F	E	E	D	D	F	D	D
6 Wellington / Freeth	A	A	A	A	A	A	A	A	A	A
7 Delancey / Freeth	E	F	F	C	C	A	A	A	A	A
8 Delancey / Arthur	D	B	B	A	A	E	A	A	A	A
9 Finucane / Site Access		B	B	,	C		C	,	B	B

Table 9 Intersection Performance - Level of Service
The associated average vehicle delays for the LOS metrics are presented in the following table.

Intersection delays	AM					PM				
	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Intersection	Base Network	Base + development	Base with development + Upgrade 1	$\begin{gathered} \text { Base with } \\ \text { development + } \\ \text { Upgrade 2 } \\ \hline \end{gathered}$	Base with development + Upgrade 3	Base Network	Base + development	$\begin{array}{\|c\|} \hline \text { Base with } \\ \text { development + } \\ \text { Upgrade 1 } \end{array}$	Base with development + Upgrade 2	$\begin{array}{\|c\|} \hline \text { Base with } \\ \text { development }+ \\ \text { Upgrade 2 } \\ \hline \end{array}$
1 Finucane / McDonald	32.8	34.6	35.5	34.2	33.7	31.8	30.7	30.9	30.6	31.0
2 Finucane / Dawson	3.5	3.6	3.1	3.1	3.2	3.8	4.0	3.2	3.3	3.4
3 Finucane / Delancey	60.2	76.1	58.0	48.6	49.5	61.9	68.3	35.7	32.0	33.4
4 Finucane / Wellington	23.4	38.0	29.1	31.9	24.7	17.7	26.4	24.4	21.2	20.6
5 Wellington / Russell	60.0	75.2	80.3	77.7	77.6	45.6	50.0	54.4	50.6	50.2
6 Wellington / Freeth	4.8	7.3	3.9	3.3	3.0	3.3	2.9	3.9	2.8	3.0
7 Delancey/ Freeth	49.3	74.5	56.8	22.4	23.0	8.5	7.5	6.9	3.7	2.2
8 Delancey / Arthur	33.8	13.9	12.9	7.3	7.6	44.3	6.5	8.5	5.9	4.2
9 Finucane / Site Access		16.3	11.4	13.1	22.1		24.7	13.5	13.1	16.8

These results indicate that with the identified intersection upgrades similar intersection performance and delays to the original background vehicles can be achieved even with the development traffic added to the overall traffic demands.
(While no upgrades at the Wellington Road / Russell Street intersection were tested, the model suggest that some relatively minor upgrades to this intersection could result in further network performance benefits).

Annexure C contains more detailed results showing the intersection performance metrics for each scenario.

3.4 Network Performance

An overall performance measure for the network can be defined as the sum of all the delays at all the intersections. This is simply the sum of each turn movement multiplied by the associated delay for that turn movement for all intersections in the network. This calculation produces a number that is indicative of the total delay for all intersections in the network.
As before, the Base network can be used as a point of reference to determine the impact the development will have on delays. TM R require mitigation measures to be implemented so that the vehicles in the original Base network, or original background traffic, is not adversely affected by the new development traffic and the associated increases in delays that these vehicles will cause.

To do this comparison, the base case for the background traffic is determined. This is the reference "delay number".

The background traffic turn volumes through all the intersections are multiplied by the "new" delays for each turn movement with the development traffic. Note that because some upgrades or changes to the network have been proposed, the routes taken by the original background traffic may have changed from their original routing to take advantage of the upgrades and improvements. For example, background traffic previously travelling from Finucane Road west to Wellington Street south may have travelled via Finucane Road through Finucane Road / Wellington Street roundabout. With the intersection upgrades at Delancey Street, some of these vehicles may choose to turn right into Delancey Street as this route option may be quicker.

With the simulation models this calculation is easily done by defining different vehicle types for the background traffic and the development traffic. The development traffic vehicles are then simply multiplied by the associated turn delays at all intersection to produce the new "delay number" for the upgraded network.

The table below presents the results of these calculations.

Background Traffic (Sum of turn volume x delay)		Total Delays (sec)		
	AM	PM	Both peaks	
Network Scenario	Total	Total	All traffic	
Scenario 1: Base existing network	629062	532573	1161636	
Scenario 2: Base existing network with development	805784	618853	1424637	
Scenario 3: Development +Upgrade 1 (lengthen slip-lane)	691710	474789	1166498	
Scenario 4: Development +Upgrade 2 (slip lane +dual rights)	615284	433747	1049031	
Scenario 5: Development +Upgrade 3 (slip lane +dual rights +re-alignment)	615128	433418	1048546	

Table $11 \quad$ Background Traffic Total Delay (sum of vehs x delay)
These results show that with the development traffic, there could be some additional delays to the background traffic, particularly during the AM peak. With Upgrade 1 the delays are mitigated to some extent with the overall delay for both peaks somewhat less than the delays in the original Base network. However, the delays during the AM peak still exceed the AM peak delays in the Base network.

With Upgrade 2 the total delays to the background vehicles in both peaks are reduced when compared with the delays in the Base network. The percentage increase or decrease in delays is shown in the following table.

Background traffic \% Increase in delay vs Base	AM	PM	Both peaks
Network Scenario	Total	Total	All traffic
Scenario 2: Base existing network with development	28.1%	16.2%	22.6%
Scenario 3: Development +Upgrade 1 (lengthen slip-lane)	10.0%	-10.9%	0.4%
Scenario 4: Development +Upgrade 2 (slip lane +dual rights)	-2.2%	-18.6%	-9.7%
Scenario 5: Development +Upgrade 3 (slip lane +dual rights +re-alignment)	-2.2%	-18.6%	-9.7%

Table 12
Percentage increase in delays to Background Traffic vs Existing Base Network

4 CONCLUSIONS

Based on the results of the simulation models, it is concluded that:

- The current network functions relatively well but some intersections, namely the Finucane Road / Delancey Street and the Wellington Road / Russell Street intersections, can be prone to congestion during peak periods.
- The development traffic will impact the performance of the network with the greatest impact likely to occur at the Finucane Road / Delancey Street intersection.
- With the development traffic added to the existing background traffic, delays can be expected to increase. However, these delays can largely be mitigated through some targeted network upgrades in conjunction with traffic signal operation changes.
- The current signal phasing will need to change so that the signals at the access to the development and the signals at the Finucane Road / Delancey Street intersection are vehicle actuated and coordinated with a common cycle time.
- The proposed upgrades are expected to encourage the use of the Delancey Steet connection between Finucane Road and Wellington Road. As a result, this is likely to impact the operation of the Wellington Road / Russell Street intersection which may require further localised upgrades to improve the operation at this location. (No evaluation of any upgrades at this intersection were investigated in this analysis)
- Upgrades 2 and 3 are expected to provide the best result in terms of reduced delays to the existing background traffic in both peak periods due to the significant increased capacity at the Finucane Road / Delancey Street intersection.
- There is little difference between Upgrades 2 and 3 (Scenarios 4 and 5) as the left-turn demand from Finucane Road WB to Delancey Street SB is very low and can easily be combined with the WB through traffic without a significant impact on the intersection performance.

Annexure A - 2022 Demand Matrices (Weekday AM and PM Peaks)

This Annexure shows the original trip generation to and from the development site and the change in the assumptions regarding the use of the accesses.

Simulation Model Zones

Simulation Model Background Traffic Demands - 2022 AM Peak

| AM Light | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | Total |
| :---: |
| $\mathbf{1}$ | 0 | $\mathbf{3 0}$ | 0 | 90 | 138 | 6 | 495 | 0 | 58 | 318 | 0 | 0 | 1 | 9 | $\mathbf{1 3}$ | 0 | 0 | $\mathbf{1 1 5 8}$ |
| $\mathbf{2}$ | 47 | 0 | 0 | 20 | 0 | 0 | 110 | 0 | 13 | 71 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | $\mathbf{2 9 1}$ |
| $\mathbf{3}$ | 25 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 4 | 24 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | $\mathbf{9 4}$ |
| $\mathbf{4}$ | 239 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 229 | 50 | 0 | 1 | 0 | 9 | 0 | 0 | $\mathbf{5 7 0}$ |
| $\mathbf{5}$ | 164 | 0 | 0 | 0 | 0 | 3 | 247 | 70 | 29 | 159 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{6 7 2}$ |
| $\mathbf{6}$ | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{4}$ |
| $\mathbf{7}$ | 369 | 29 | 44 | 101 | 155 | 7 | 0 | 0 | 65 | 0 | 0 | 0 | 2 | 43 | 15 | 0 | 0 | $\mathbf{8 3 0}$ |
| $\mathbf{8}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{9}$ | 206 | 16 | 25 | 56 | 86 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 1 | 24 | 8 | 0 | 0 | $\mathbf{4 6 2}$ |
| $\mathbf{1 0}$ | 250 | 19 | 30 | 68 | 105 | 5 | 80 | 0 | 75 | 0 | 0 | 0 | 1 | 29 | 10 | 0 | 0 | $\mathbf{6 7 2}$ |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{5 0}$ |
| $\mathbf{1 2}$ | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{4 0}$ |
| $\mathbf{1 3}$ | 2 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{9}$ |
| $\mathbf{1 4}$ | 3 | 33 | 0 | 10 | 0 | 0 | 53 | 0 | 6 | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 3 9}$ |
| $\mathbf{1 5}$ | 7 | 0 | 0 | 2 | 0 | 0 | 10 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{2 6}$ |
| $\mathbf{1 6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| Total | $\mathbf{1 3 5 3}$ | $\mathbf{1 2 7}$ | $\mathbf{9 9}$ | $\mathbf{3 9 8}$ | $\mathbf{4 8 4}$ | $\mathbf{2 1}$ | $\mathbf{1 0 3 9}$ | $\mathbf{7 0}$ | $\mathbf{2 9 3}$ | $\mathbf{8 8 4}$ | $\mathbf{5 0}$ | $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{1 3 8}$ | $\mathbf{5 5}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{5 0 1 7}$ |

| AM Heavy | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | Total |
| :---: |
| $\mathbf{1}$ | 0 | 1 | 0 | 6 | 4 | 0 | 19 | 0 | 3 | 19 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | $\mathbf{5 4}$ |
| $\mathbf{2}$ | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | $\mathbf{5}$ |
| $\mathbf{3}$ | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{3}$ |
| $\mathbf{4}$ | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 2}$ |
| $\mathbf{5}$ | 3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 2}$ |
| $\mathbf{6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{7}$ | 11 | 1 | 2 | 4 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{2 4}$ |
| $\mathbf{8}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{9}$ | 2 | 0 | 0 | 1 | 1 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{9}$ |
| $\mathbf{1 0}$ | 10 | 1 | 2 | 3 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | $\mathbf{2 2}$ |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 4}$ | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{3}$ |
| $\mathbf{1 5}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| Total | $\mathbf{3 4}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{1 4}$ | $\mathbf{1 1}$ | $\mathbf{0}$ | $\mathbf{2 9}$ | $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{3 4}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1 4 4}$ |

Simulation Model Background Traffic Demands - 2022 PM Peak

| PM Light | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | Total |
| :---: |
| $\mathbf{1}$ | 0 | 59 | 0 | 73 | 234 | 8 | 479 | 0 | $\mathbf{9}$ | 408 | 0 | 0 | $\mathbf{4}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | 0 | 0 | $\mathbf{1 3 8 7}$ |
| $\mathbf{2}$ | 44 | 0 | 0 | 6 | 0 | 0 | 40 | 0 | 8 | 34 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | $\mathbf{1 6 4}$ |
| $\mathbf{3}$ | 16 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 3 | 14 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | $\mathbf{5 2}$ |
| $\mathbf{4}$ | 118 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 104 | 100 | 0 | 1 | 0 | 4 | 0 | 0 | $\mathbf{3 5 1}$ |
| $\mathbf{5}$ | 162 | 0 | 0 | 0 | 0 | 3 | 167 | 0 | 33 | 142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{5 0 7}$ |
| $\mathbf{6}$ | 9 | 0 | 0 | 0 | 7 | 0 | 9 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{3 3}$ |
| $\mathbf{7}$ | 411 | 41 | 68 | 65 | 208 | 7 | 0 | 0 | 84 | 0 | 0 | 0 | 4 | 63 | 12 | 0 | 0 | $\mathbf{9 6 3}$ |
| $\mathbf{8}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{9}$ | 101 | 10 | 17 | 16 | 51 | 0 | 105 | 0 | 0 | 41 | 0 | 0 | 1 | 15 | 3 | 0 | 0 | $\mathbf{3 6 0}$ |
| $\mathbf{1 0}$ | 238 | 24 | 39 | 38 | 120 | 4 | 0 | 0 | 55 | 0 | 0 | 70 | 2 | 36 | 7 | 100 | 0 | $\mathbf{7 3 3}$ |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 3 0}$ |
| $\mathbf{1 2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{4 0}$ |
| $\mathbf{1 3}$ | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{9}$ |
| $\mathbf{1 4}$ | 12 | 25 | 0 | 6 | 0 | 0 | 41 | 0 | 8 | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 2 7}$ |
| $\mathbf{1 5}$ | 20 | 0 | 0 | 3 | 0 | 0 | 21 | 0 | 4 | 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{6}$ |
| $\mathbf{1 6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| Total | $\mathbf{1 1 3 4}$ | $\mathbf{1 5 9}$ | $\mathbf{1 2 4}$ | $\mathbf{3 0 7}$ | $\mathbf{6 2 0}$ | $\mathbf{2 2}$ | $\mathbf{9 2 2}$ | $\mathbf{0}$ | $\mathbf{3 1 5}$ | $\mathbf{8 0 6}$ | $\mathbf{1 0 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 2}$ | $\mathbf{1 6 1}$ | $\mathbf{4 0}$ | $\mathbf{1 0 0}$ | $\mathbf{0}$ | $\mathbf{4 9 2 2}$ |

| PM Heavy | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | Total |
| :---: |
| $\mathbf{1}$ | 0 | 4 | 0 | 0 | 1 | 0 | 6 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1 7}$ |
| $\mathbf{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{4}$ | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{4}$ |
| $\mathbf{5}$ | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{9}$ |
| $\mathbf{6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{7}$ | 11 | 0 | 4 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | $\mathbf{2 0}$ |
| $\mathbf{8}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{9}$ | 2 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{7}$ |
| $\mathbf{1 0}$ | 5 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{8}$ |
| $\mathbf{1 1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 3}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 4}$ | $\mathbf{2}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{2}$ |
| $\mathbf{1 5}$ | $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{3}$ |
| $\mathbf{1 6}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ |
| $\mathbf{1 7}$ | $\mathbf{0}$ |
| Total | $\mathbf{2 6}$ | $\mathbf{4}$ | $\mathbf{7}$ | $\mathbf{1}$ | $\mathbf{4}$ | $\mathbf{0}$ | $\mathbf{1 2}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1 4}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{7 0}$ |

Simulation Model Traffic Demands - Development Traffic Only

Original AM Peak																																							
																				AM Peak																			
eid	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		18	Total	eid	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	0	0	145	181	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	181	181
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	27	34	2	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	-	34	34
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	11	14	3	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	14	14
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	40	50	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	0	0	0	50
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	15	19	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	19
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	9	11	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	11
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	63	79	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	63	79
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		8	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	46	58	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	46	58
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	48	60	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	-	0	48	60
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0	0	0	-		0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	32	2	2	12	2	2	15	0	3	13	0	0	0	0	0	0	0	0	0	15	0	0	0	61	10	'9	15	0	0	0	0	0	0	0	0	0	0	0	95
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	128	6	9	49	8	7	60	0	12	50	0	0	0	0	0	0	0	0	0	18	160	8	11	0	0	0	60	0	15	63	0	0	0	0	0	0	0	0	317
Total	160	8	11	61	10	9	75		15	63	0	0	0	0	0	0	0	0	918	Total	160	8	11	61	10	9	75	0	15	63	0	0	0	-	119	0	0	387	918
Original																				Revised																			
PM Peak																				PM Peak																			
eid	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total	eid	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33	0	0	134	167	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	167	167
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	9	11	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	11
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	5	6	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	6
4	0	0	0	0	0	0	0	0	0	0	0	0	0	O	7	0	0	29	36	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	0	0	0	36
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	10	13	5	0	0	0	0	0	0	0	0	0	0		0	0	0	13	0	0	0	13
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	7	9	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	9
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	-	53	66	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	53	66
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	30	37	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	30	37
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	43	54	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	43	54
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	-		0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	0	0	-	0		0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	37	2	4	14	3	3	16	0	5	15	0	0	0	0	0	0	0	0	79	15	0	0	0	6^{\prime}	14	16	16	0	0	0	0	0	0	-	0	0	0	0	115
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	149	10	14	55	11	13	64	0	22	61	0	0	0	0	0	0	0	0	320	18	186	12	18	0	0	0	64	0	27	76	0	0	0	0	0	0	0	0	383
Total	186	12	18	69	14	16	80		27	76	0	0	0	0	99	0	0	399	897	Total	186	12	18	69	14	16	80	0	27	76		0	0	0	89	0	0	310	897

AnNexure B - Intersec tion Turn Volume Calbration

GEH Values - All intersections

Annexure C - Detailed Intersection Performance Metrics

[^1]
Scenario 1: Background Traffic - No Development

SC ENARIO 2: BACKG ROUND + DEVELOPMENT TRAFFIC - No
UPG RADES

SC ENARIO 3: BACKG ROUND + DEVELOPMENTTRAFFIC UPG RADE 1

SCENARIO 4: BACKGROUND TRAFFIC WITH DEVELOPMENT UPG RADE 2

SCenario 5: BACKG ROUND TRAFFIC WITH DEVELOPMENT-
UPG RADE 3

Annexure D - Background Tkaffic Network Delays

Background Traffic (Sum of turn volume x delay)	Total Delays (sec)						
	AM			PM			Both peaks
Network Scenario	Light	Heavy	Total	Light	Heavy	Total	All traffic
Scenario 1: Base existing network	610316	18747	629062	524603	7970	532573	1161636
Scenario 2: Base existing network with development	780832	25094	805784	607906	11079	618853	1424637
Scenario 3: Development + Upgrade 1 (lengthen slip-lane)	670379	21410	691710	465789	9046	474789	1166498
Scenario 4: Development + Upgrade 2 (slip lane +dual rights)	595133	20335	615284	425934	7899	433747	1049031
Scenario 5: Development +Upgrade 3 (slip lane + dual rights +re-alignment)	595039	20273	615128	425706	7798	433418	1048546

Background Traffic (Sum of turn volume x delay)	Total Delays (hours						
	AM			PM			Both peaks
Scenario	Light	Heavy	Total	Light	Heavy	Total	All traffic
Scenario 1: Base existing network	170	5	175	146	2	148	323
Scenario 2: Base existing netw ork with development	217	7	224	169	3	172	396
Scenario 3: Development +Upgrade 1 (lengthen slip-lane)	186	6	192	129	3	132	324
Scenario 4: Development + Upgrade 2 (slip lane +dual rights)	165	6	171	118	2	120	291
Scenario 5: Development +Upgrade 3 (slip lane +dual rights +re-alignment)	165	6	171	118	2	120	291

Background traffic \% Increase in delay vs Base	AM			PM			Both peaks
Network Scenario	Light	Heavy	Total	Light	Heavy	Total	All traffic
Scenario 2: Base existing network with development	27.9\%	33.9\%	28.1\%	15.9\%	39.0\%	16.2\%	22.6\%
Scenario 3: Development +Upgrade 1 (lengthen slip-lane)	9.8\%	14.2\%	10.0\%	-11.2\%	13.5\%	-10.9\%	0.4\%
Scenario 4: Development +Upgrade 2 (slip lane +dual rights)	-2.5\%	8.5\%	-2.2\%	-18.8\%	-0.9\%	-18.6\%	-9.7\%
Scenario 5: Development +Upgrade 3 (slip lane + dual rights +re-alignment)	-2.5\%	8.1\%	-2.2\%	-18.9\%	-2.2\%	-18.6\%	-9.7\%

Annexure E- Rnucane Road/ Delancey Street Signal Data

AM Peak Signal Data

PM Peak Signal Data

APPENDIX E- SIDRA OUTPUTS

SITE LAYOUT

∇ Site: 101 [Delancey Street Site Access W/D 2024 AM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.
4N

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Created: Monday, 7 November 2022 5:12:46 PM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Delancey Street Site Access W/D 2024 AM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn	$\begin{aligned} & \text { INF } \\ & \text { VOL؛ } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$	$\begin{gathered} \text { DEM } \\ \text { FLO } \\ \text { [Total } \\ \text { veh/h } \end{gathered}$	$\begin{gathered} \text { ND } \\ \text { VS } \\ \text { HV] } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Aver. Delay \qquad sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { =UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Delancey Street													
1 L2	79	0.0	83	0.0	0.045	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.6
2 T1	329	4.0	346	4.0	0.182	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
3 R2	6	0.0	6	0.0	0.008	7.7	LOSA	0.0	0.2	0.54	0.65	0.54	51.0
3 u U	1	0.0	1	0.0	0.008	11.7	LOS B	0.0	0.2	0.54	0.65	0.54	51.1
Approach	415	3.2	437	3.2	0.182	1.2	NA	0.0	0.2	0.01	0.12	0.01	58.4
East: Arthur Street													
4 L2	7	0.0	7	0.0	0.024	8.6	LOSA	0.1	0.5	0.61	0.76	0.61	49.4
6 R2	3	0.0	3	0.0	0.024	18.0	LOS C	0.1	0.5	0.61	0.76	0.61	49.2
Approach	10	0.0	11	0.0	0.024	11.4	LOS B	0.1	0.5	0.61	0.76	0.61	49.3
North: Delancey Street													
7 L2	2	0.0	2	0.0	0.301	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.2
8 T1	545	2.0	574	2.0	0.301	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9 R2	95	0.0	100	0.0	0.111	7.6	LOS A	0.4	3.1	0.48	0.70	0.48	51.5
9 u U	1	0.0	1	0.0	0.111	9.3	LOSA	0.4	3.1	0.48	0.70	0.48	51.6
Approach	643	1.7	677	1.7	0.301	1.2	NA	0.4	3.1	0.07	0.11	0.07	58.4
West: Site Access													
10 L2	126	0.0	133	0.0	0.143	7.3	LOSA	0.5	3.7	0.42	0.67	0.42	52.3
Approach	126	0.0	133	0.0	0.143	7.3	LOSA	0.5	3.7	0.42	0.67	0.42	52.3
All Vehicles	1194	2.0	1257	2.0	0.301	2.0	NA	0.5	3.7	0.09	0.18	0.09	57.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 11:37:32 AM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Delancey Street Site Access W/D 2024 PM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
Mov Turn ID	$\begin{array}{r} \text { IN } \\ \text { VOL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{gathered} \text { JT } \\ \text { UES } \\ \text { HV] } \\ \% \end{gathered}$	$\begin{aligned} & \text { DEM } \\ & \text { FLOO } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{gathered} \text { AND } \\ \text { WS } \\ \text { HV] } \\ \% \end{gathered}$	Deg. Satn v/c	Aver. Delay sec	Level of Service	$\begin{gathered} 95 \% \text { B/ } \\ \text { QU } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \\ \hline \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Delancey Street													
1 L2	59	4.0	62	4.0	0.034	5.6	LOS A	0.0	0.0	0.00	0.58	0.00	53.4
2 T1	322	0.0	339	0.0	0.174	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
3 R 2	9	0.0	9	0.0	0.010	6.9	LOS A	0.0	0.3	0.46	0.61	0.46	51.8
3 u U	1	0.0	1	0.0	0.010	9.8	LOSA	0.0	0.3	0.46	0.61	0.46	51.9
Approach	391	0.6	412	0.6	0.174	1.1	NA	0.0	0.3	0.01	0.10	0.01	58.6
East: Arthur Street													
4 L2	6	0.0	6	0.0	0.014	7.5	LOS A	0.0	0.3	0.50	0.67	0.50	50.9
6 R2	2	0.0	2	0.0	0.014	14.6	LOS B	0.0	0.3	0.50	0.67	0.50	50.6
Approach	8	0.0	8	0.0	0.014	9.3	LOS A	0.0	0.3	0.50	0.67	0.50	50.8
North: Delancey Street													
7 L2	3	1.0	3	1.0	0.225	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.2
8 T1	408	1.0	429	1.0	0.225	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9 R2	69	0.0	73	0.0	0.078	7.3	LOS A	0.3	2.1	0.45	0.67	0.45	51.7
9 u U	1	0.0	1	0.0	0.078	9.1	LOSA	0.3	2.1	0.45	0.67	0.45	51.8
Approach	481	0.9	506	0.9	0.225	1.2	NA	0.3	2.1	0.07	0.10	0.07	58.5
West: Site Access													
10 L2	176	2.0	185	2.0	0.199	7.4	LOS A	0.8	5.5	0.43	0.68	0.43	52.2
Approach	176	2.0	185	2.0	0.199	7.4	LOS A	0.8	5.5	0.43	0.68	0.43	52.2
All Vehicles	1056	0.9	1112	0.9	0.225	2.2	NA	0.8	5.5	0.11	0.20	0.11	57.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 11:37:33 AM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Delancey Street Site Access W/D 2034 AM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { INF } \\ & \text { VOL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad	Level of Service	$\begin{gathered} \text { 95\% B B } \\ \text { QU } \\ \text { [Veh. } \\ \text { veh } \end{gathered}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Delancey Street													
1 L2	79	0.0	83	0.0	0.045	5.6	LOS A	0.0	0.0	0.00	0.58	0.00	53.6
2 T1	440	4.0	463	4.0	0.244	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3 R 2	7	0.0	7	0.0	0.011	8.2	LOS A	0.0	0.3	0.57	0.68	0.57	50.7
3 u U	1	0.0	1	0.0	0.011	12.7	LOS B	0.0	0.3	0.57	0.68	0.57	50.8
Approach	527	3.3	555	3.3	0.244	1.0	NA	0.0	0.3	0.01	0.10	0.01	58.7
East: Arthur Street													
4 L2	8	0.0	8	0.0	0.037	9.2	LOS A	0.1	0.8	0.69	0.82	0.69	47.7
6 R2	4	0.0	4	0.0	0.037	23.6	LOS C	0.1	0.8	0.69	0.82	0.69	47.5
Approach	12	0.0	13	0.0	0.037	14.0	LOS B	0.1	0.8	0.69	0.82	0.69	47.6
North: Delancey Street													
7 L2	3	0.0	3	0.0	0.335	5.6	LOS A	0.0	0.0	0.00	0.00	0.00	58.2
8 T1	605	2.0	637	2.0	0.335	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	59.8
9 R2	95	0.0	100	0.0	0.129	8.5	LOS A	0.5	3.5	0.54	0.77	0.54	50.9
9 u U	1	0.0	1	0.0	0.129	10.7	LOS B	0.5	3.5	0.54	0.77	0.54	50.9
Approach	704	1.7	741	1.7	0.335	1.3	NA	0.5	3.5	0.07	0.11	0.07	58.4
West: Site Access													
10 L2	126	0.0	133	0.0	0.166	8.2	LOS A	0.6	4.2	0.49	0.74	0.49	51.6
Approach	126	0.0	133	0.0	0.166	8.2	LOS A	0.6	4.2	0.49	0.74	0.49	51.6
All Vehicles	1369	2.2	1441	2.2	0.335	1.9	NA	0.6	4.2	0.09	0.17	0.09	57.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 11:37:34 AM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

MOVEMENT SUMMARY

∇ Site: 101 [Delancey Street Site Access W/D 2034 PM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Give-Way (Two-Way)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { INF } \\ & \text { vOL } \\ & \text { [Total } \\ & \text { veh/h } \end{aligned}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$		$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \end{aligned}$	Deg. Satn v/c	Aver. Delay \qquad	Level of Service	$\begin{aligned} & \text { 95\% B B } \\ & \text { QU } \\ & \text { [Veh. } \\ & \text { veh } \end{aligned}$	$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{m} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Delancey Street													
1 L2	59	4.0	62	4.0	0.034	5.6	LOSA	0.0	0.0	0.00	0.58	0.00	53.4
2 T1	359	0.0	378	0.0	0.194	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
3 R 2	10	0.0	11	0.0	0.011	7.1	LOSA	0.0	0.3	0.48	0.62	0.48	51.7
3 u U	1	0.0	1	0.0	0.011	10.2	LOS B	0.0	0.3	0.48	0.62	0.48	51.7
Approach	429	0.6	452	0.6	0.194	1.0	NA	0.0	0.3	0.01	0.10	0.01	58.7
East: Arthur Street													
4 L2	7	0.0	7	0.0	0.017	7.7	LOS A	0.1	0.4	0.52	0.68	0.52	50.6
6 R2	2	0.0	2	0.0	0.017	16.2	LOS C	0.1	0.4	0.52	0.68	0.52	50.4
Approach	9	0.0	9	0.0	0.017	9.6	LOS A	0.1	0.4	0.52	0.68	0.52	50.6
North: Delancey Street													
7 L2	4	1.0	4	1.0	0.245	5.6	LOS A	0.0	0.0	0.00	0.01	0.00	58.2
8 T1	444	1.0	467	1.0	0.245	0.1	LOS A	0.0	0.0	0.00	0.01	0.00	59.8
9 R2	69	0.0	73	0.0	0.082	7.6	LOS A	0.3	2.2	0.47	0.69	0.47	51.5
9 u U	1	0.0	1	0.0	0.082	9.5	LOSA	0.3	2.2	0.47	0.69	0.47	51.6
Approach	518	0.9	545	0.9	0.245	1.1	NA	0.3	2.2	0.06	0.10	0.06	58.5
West: Site Access													
10 L2	176	2.0	185	2.0	0.208	7.6	LOS A	0.8	5.7	0.46	0.71	0.46	52.0
Approach	176	2.0	185	2.0	0.208	7.6	LOS A	0.8	5.7	0.46	0.71	0.46	52.0
All Vehicles	1132	0.9	1192	0.9	0.245	2.2	NA	0.8	5.7	0.11	0.20	0.11	57.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Vehicle movement LOS values are based on average delay per movement.
Minor Road Approach LOS values are based on average delay for all vehicle movements.
NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 11:37:35 AM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

SITE LAYOUT

Site: 101 [Finucane Road Site Access W/D 2024 AM (Site

 Folder: Access SIDRAS)]New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

Finucane Road

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Created: Monday, 7 November 2022 5:13:41 PM
Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

MOVEMENT SUMMARY

Site: 101 [Finucane Road Site Access W/D 2024 AM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
Mov Turn ID		$\begin{aligned} & \text { JT } \\ & \text { VES } \\ & \text { HV] } \\ & \% \end{aligned}$	DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE [Veh. Dist] veh m		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
East: Finucane Road													
5 T1	1548	2.0	1629	2.0	0.595	6.9	LOS A	17.7	126.0	0.54	0.50	0.54	53.9
6 R2	142	0.0	149	0.0	* 0.604	47.1	LOS D	6.5	45.4	0.99	0.81	1.01	33.3
Approach	1690	1.8	1779	1.8	0.604	10.3	LOS B	17.7	126.0	0.58	0.52	0.58	51.2
North: Site Access													
7 L2	133	0.0	140	0.0	0.212	27.3	LOS C	4.3	30.0	0.74	0.75	0.74	40.7
9 R2	142	0.0	149	0.0	* 0.517	44.5	LOS D	6.2	43.7	0.97	0.80	0.97	34.2
Approach	275	0.0	289	0.0	0.517	36.2	LOS D	6.2	43.7	0.85	0.78	0.85	37.0
West: Finucane Road													
10 L2	230	0.0	242	0.0	0.178	9.5	LOS A	3.2	22.4	0.33	0.65	0.33	51.4
11 T1	1124	4.0	1183	4.0	* 0.620	16.7	LOS B	18.9	136.5	0.76	0.68	0.76	47.0
Approach	1354	3.3	1425	3.3	0.620	15.5	LOS B	18.9	136.5	0.69	0.68	0.69	47.7
All Vehicles	3319	2.3	3494	2.3	0.620	14.6	LOS B	18.9	136.5	0.65	0.61	0.65	48.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of AVERAGE BACK OF Service QUEUE		ACK OF Dist]	Prop. EffectiveQue $\begin{aligned} & \text { Stop } \\ & \text { Rate }\end{aligned}$		Travel Time	Travel Aver. Dist. Speed m m/sec	
East: Finucane Road											
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	208.9	220.5	1.06
North: Site Access											
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	203.8	213.9	1.05
West: Finucane Road											
P4BSlip/ Bypass	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	196.4	204.3	1.04
All Pedestrians	150	158	39.3	LOS D	0.1	0.1	0.94	0.94	203.1	212.9	1.05

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 12:02:53 PM Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

PHASING SUMMARY

Site: 101 [Finucane Road Site Access W/D 2024 AM (Site Folder: Access SIDRAS)]

New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing \& Timing dialog
Phase Times determined by the program
Phase Sequence: Leading Right Turn
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary
Phase A B C Phase Change Time (sec) 0 18 70 Green Time (sec) 12 46 14 Phase Time (sec) 18 52 20 Phase Split 20% 58% 22%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Oermitted/Opposed
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

MOVEMENT SUMMARY

Site: 101 [Finucane Road Site Access W/D 2024 PM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$			DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. Aver. No. Speed Cycles km/h	
East: Finucane Road													
5 T1	1441	2.0	1517	2.0	0.601	9.4	LOS A	18.7	133.3	0.62	0.56	0.62	52.0
6 R2	124	0.0	131	0.0	* 0.633	49.4	LOS D	5.8	40.9	1.00	0.82	1.06	32.6
Approach	1565	1.8	1647	1.8	0.633	12.6	LOS B	18.7	133.3	0.65	0.58	0.65	49.6
North: Site Access													
7 L2	171	0.0	180	0.0	0.249	25.5	LOS C	5.3	37.4	0.72	0.76	0.72	41.5
9 R2	228	0.0	240	0.0	* 0.612	41.1	LOS D	9.8	68.6	0.96	0.82	0.96	35.3
Approach	399	0.0	420	0.0	0.612	34.4	LOS C	9.8	68.6	0.85	0.79	0.85	37.7
West: Finucane Road													
10 L2	190	0.0	200	0.0	0.143	8.8	LOS A	2.4	16.5	0.29	0.64	0.29	51.9
11 T1	1083	1.0	1140	1.0	* 0.623	18.7	LOS B	18.8	132.6	0.80	0.71	0.80	45.9
Approach	1273	0.9	1340	0.9	0.623	17.2	LOS B	18.8	132.6	0.72	0.70	0.72	46.7
All Vehicles	3237	1.2	3407	1.2	0.633	17.1	LOS B	18.8	133.3	0.70	0.65	0.70	46.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
${ }_{\text {ID }}^{\text {Mov }} \text { Crossing }$	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec		Level of AVERAGE BACK OF Service QUEUE		Prop. EffectiveQue $\begin{aligned} & \text { Stop } \\ & \\ & \\ & \\ & \text { Rate }\end{aligned}$		Travel Time sec	Travel Aver. Dist. Speed $\mathrm{mm} / \mathrm{sec}$	
East: Finucane Road											
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	208.9	220.5	1.06
North: Site Access											
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	203.8	213.9	1.05
West: Finucane Road											
P4BSlip/ Bypass	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	196.4	204.3	1.04
All Pedestrians	150	158	39.3	LOS D	0.1	0.1	0.94	0.94	203.1	212.9	1.05

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 12:02:54 PM Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

PHASING SUMMARY

Site: 101 [Finucane Road Site Access W/D 2024 PM (Site Folder: Access SIDRAS)]

New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing \& Timing dialog
Phase Times determined by the program
Phase Sequence: Leading Right Turn
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary
Phase A B C Phase Change Time (sec) 0 16 65 Green Time (sec) 10 43 19 Phase Time (sec) 16 49 25 Phase Split 18% 54% 28%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Oermitted/Opposed
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

MOVEMENT SUMMARY

Site: 101 [Finucane Road Site Access W/D 2034 AM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. Aver. No. Speed Cycles km/h	
East: Finucane Road													
5 T1	1656	2.0	1743	2.0	0.637	7.3	LOS A	20.0	142.1	0.57	0.53	0.57	53.6
6 R2	142	0.0	149	0.0	* 0.659	48.9	LOS D	6.7	46.7	1.00	0.83	1.07	32.8
Approach	1798	1.8	1893	1.8	0.659	10.6	LOS B	20.0	142.1	0.61	0.55	0.61	51.0
North: Site Access													
7 L2	133	0.0	140	0.0	0.219	28.1	LOS C	4.4	30.5	0.75	0.75	0.75	40.3
9 R2	184	0.0	194	0.0	* 0.670	46.4	LOS D	8.5	59.2	0.99	0.84	1.05	33.6
Approach	317	0.0	334	0.0	0.670	38.7	LOS D	8.5	59.2	0.89	0.80	0.93	36.1
West: Finucane Road													
10 L2	230	0.0	242	0.0	0.175	9.2	LOS A	3.1	21.4	0.31	0.65	0.31	51.6
11 T1	1287	4.0	1355	4.0	* 0.713	17.1	LOS B	23.6	170.8	0.80	0.72	0.80	46.8
Approach	1517	3.4	1597	3.4	0.713	15.9	LOS B	23.6	170.8	0.73	0.71	0.73	47.5
All Vehicles	3632	2.3	3823	2.3	0.713	15.3	LOS B	23.6	170.8	0.68	0.64	0.69	47.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Input Vol. ped/h	Dem. Flow ped/h	Aver. Delay sec	Level of AVERAGE BACK OF Service QUEUE		ACK OF Dist]	Prop. EffectiveQue $\begin{aligned} & \text { Stop } \\ & \text { Rate }\end{aligned}$		Travel Time	Travel Aver. Dist. Speed m m/sec	
East: Finucane Road											
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	208.9	220.5	1.06
North: Site Access											
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	203.8	213.9	1.05
West: Finucane Road											
P4BSlip/ Bypass	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	196.4	204.3	1.04
All Pedestrians	150	158	39.3	LOS D	0.1	0.1	0.94	0.94	203.1	212.9	1.05

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 12:02:55 PM Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

PHASING SUMMARY

Site: 101 [Finucane Road Site Access W/D 2034 AM (Site Folder: Access SIDRAS)]

New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing \& Timing dialog
Phase Times determined by the program
Phase Sequence: Leading Right Turn
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary			
Phase	A	B	C
Phase Change Time (sec)	0	17	70
Green Time (sec)	11	47	14
Phase Time (sec)	17	53	20
Phase Split	19\%	59\%	22\%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Oermitted/Opposed
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

MOVEMENT SUMMARY

Site: 101 [Finucane Road Site Access W/D 2034 PM (Site
Folder: Access SIDRAS)]
New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE		Prop. Que	Effective Stop Rate	Aver. Aver. No. Speed Cycles km/h	
East: Finucane Road													
5 T1	1589	2.0	1673	2.0	0.641	8.8	LOS A	20.7	147.3	0.62	0.57	0.62	52.4
6 R2	124	0.0	131	0.0	* 0.633	49.4	LOS D	5.8	40.9	1.00	0.82	1.06	32.6
Approach	1713	1.9	1803	1.9	0.641	11.7	LOS B	20.7	147.3	0.65	0.59	0.65	50.2
North: Site Access													
7 L2	171	0.0	180	0.0	0.264	27.1	LOS C	5.5	38.8	0.74	0.76	0.74	40.8
9 R2	228	0.0	240	0.0	* 0.684	44.1	LOS D	10.3	72.1	0.99	0.85	1.04	34.3
Approach	399	0.0	420	0.0	0.684	36.8	LOS D	10.3	72.1	0.88	0.81	0.91	36.8
West: Finucane Road													
10 L2	190	0.0	200	0.0	0.143	8.8	LOS A	2.4	16.5	0.29	0.64	0.29	51.9
11 T1	1239	1.0	1304	1.0	* 0.695	18.2	LOS B	22.6	159.6	0.81	0.73	0.81	46.2
Approach	1429	0.9	1504	0.9	0.695	17.0	LOS B	22.6	159.6	0.74	0.72	0.74	46.9
All Vehicles	3541	1.2	3727	1.2	0.695	16.7	LOS B	22.6	159.6	0.71	0.66	0.72	46.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.
Intersection and Approach LOS values are based on average delay for all vehicle movements.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: SIDRA Standard.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

* Critical Movement (Signal Timing)

Pedestrian Movement Performance											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \\ & \text { IDossing } \end{aligned}$	Input Vol. $\mathrm{ped} / \mathrm{h}$	Dem. Flow ped/h	Aver. Delay \qquad sec	Level of AVERAGE BACK OF Service QUEUE			Prop. Effective Que $\begin{aligned} & \text { Stop } \\ & \text { Rate }\end{aligned}$		Travel Time sec	Travel Aver. Dist. Speed\qquad	
East: Finucane Road											
P2 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	208.9	220.5	1.06
North: Site Access											
P3 Full	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	203.8	213.9	1.05
West: Finucane Road											
P4BSlip/ Bypass	50	53	39.3	LOS D	0.1	0.1	0.94	0.94	196.4	204.3	1.04
All Pedestrians	150	158	39.3	LOS D	0.1	0.1	0.94	0.94	203.1	212.9	1.05

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: LAMBERT AND REHBEIN (SEQ) PTY LTD | Licence: PLUS / 1PC | Processed: Monday, 11 July 2022 12:02:56 PM Project: F:\Jobs\B19500\B19590\Design\Traffic\B19590 SIDRAS - Network.sip9

PHASING SUMMARY

Site: 101 [Finucane Road Site Access W/D 2034 PM (Site Folder: Access SIDRAS)]

New Site
Site Category: (None)
Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time $=90$ seconds (Site User-Given Cycle Time)

Timings based on settings in the Site Phasing \& Timing dialog
Phase Times determined by the program
Phase Sequence: Leading Right Turn
Reference Phase: Phase A
Input Phase Sequence: A, B, C
Output Phase Sequence: A, B, C

Phase Timing Summary
Phase A B C Phase Change Time (sec) 0 16 67 Green Time (sec) 10 45 17 Phase Time (sec) 16 51 23 Phase Split 18% 57% 26%

See the Timing Analysis report for more detailed information including input values of Yellow Time and All-Red Time, and information on any adjustments to Intergreen Time, Phase Time and Green Time values in cases of Pedestrian Actuation, Minor Phase Actuation and Phase Frequency values (user-specified or implied) less than 100%.

REF: Reference Phase
VAR: Variable Phase
Normal Movement
Slip/Bypass-Lane Movement
Stopped Movement
Oermitted/Opposed
Other Movement Class (MC) Running
Mixed Running \& Stopped MCs
Other Movement Class (MC) Stopped

[^0]: Carficatons ano olscamers
 Hi Phu

[^1]: The following tables contain the modelled turn volumes (background plus development traffic) and the associated delays for each turn movement. The approach and intersection delays are the weighted average of the respective turn delays.

